期刊文献+

Performance and Optimization of a Small Hybrid Solar-Thermal Collector

Performance and Optimization of a Small Hybrid Solar-Thermal Collector
下载PDF
导出
摘要 A hybrid solar collector was designed to investigate the effects of combining two different solar collector techniques on the overall collector’s effectiveness. While most solar collectors focus only on one solar collection method, the small hybrid system uses a flat plate collector in conjunction with five evacuated tubes to absorb the most energy possible from both direct and diffuse solar radiation. Data was collected over four months while the system operated at different flow rates and with various levels of available insolation from the sun to evaluate the performance of the solar collector. To understand the relative contribution of the flat plate collector and the evacuated tubes, temperature differences across each part of the system were measured. The results indicate the average first law efficiency of the hybrid system is 43.3%, significantly higher than the performance of the flat plate alone. An exergy analysis was performed for this system to assess the performance of the flat plate system by itself. Results of the second law analysis were comparable to the exergetic efficiencies of other experimental collectors, around 4%. Though the efficiencies were in the expected range, they reveal that further improvements to the system are possible. A hybrid solar collector was designed to investigate the effects of combining two different solar collector techniques on the overall collector’s effectiveness. While most solar collectors focus only on one solar collection method, the small hybrid system uses a flat plate collector in conjunction with five evacuated tubes to absorb the most energy possible from both direct and diffuse solar radiation. Data was collected over four months while the system operated at different flow rates and with various levels of available insolation from the sun to evaluate the performance of the solar collector. To understand the relative contribution of the flat plate collector and the evacuated tubes, temperature differences across each part of the system were measured. The results indicate the average first law efficiency of the hybrid system is 43.3%, significantly higher than the performance of the flat plate alone. An exergy analysis was performed for this system to assess the performance of the flat plate system by itself. Results of the second law analysis were comparable to the exergetic efficiencies of other experimental collectors, around 4%. Though the efficiencies were in the expected range, they reveal that further improvements to the system are possible.
出处 《Smart Grid and Renewable Energy》 2018年第12期259-271,共13页 智能电网与可再生能源(英文)
关键词 Solar Thermal Energy FLAT Plate COLLECTOR Evacuate Tube COLLECTOR EXERGY SECOND LAW of THERMODYNAMICS Solar Thermal Energy Flat Plate Collector Evacuate Tube Collector Exergy Second Law of Thermodynamics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部