期刊文献+

Word Embeddings and Semantic Spaces in Natural Language Processing 被引量:1

Word Embeddings and Semantic Spaces in Natural Language Processing
下载PDF
导出
摘要 One of the critical hurdles, and breakthroughs, in the field of Natural Language Processing (NLP) in the last two decades has been the development of techniques for text representation that solves the so-called curse of dimensionality, a problem which plagues NLP in general given that the feature set for learning starts as a function of the size of the language in question, upwards of hundreds of thousands of terms typically. As such, much of the research and development in NLP in the last two decades has been in finding and optimizing solutions to this problem, to feature selection in NLP effectively. This paper looks at the development of these various techniques, leveraging a variety of statistical methods which rest on linguistic theories that were advanced in the middle of the last century, namely the distributional hypothesis which suggests that words that are found in similar contexts generally have similar meanings. In this survey paper we look at the development of some of the most popular of these techniques from a mathematical as well as data structure perspective, from Latent Semantic Analysis to Vector Space Models to their more modern variants which are typically referred to as word embeddings. In this review of algoriths such as Word2Vec, GloVe, ELMo and BERT, we explore the idea of semantic spaces more generally beyond applicability to NLP. One of the critical hurdles, and breakthroughs, in the field of Natural Language Processing (NLP) in the last two decades has been the development of techniques for text representation that solves the so-called curse of dimensionality, a problem which plagues NLP in general given that the feature set for learning starts as a function of the size of the language in question, upwards of hundreds of thousands of terms typically. As such, much of the research and development in NLP in the last two decades has been in finding and optimizing solutions to this problem, to feature selection in NLP effectively. This paper looks at the development of these various techniques, leveraging a variety of statistical methods which rest on linguistic theories that were advanced in the middle of the last century, namely the distributional hypothesis which suggests that words that are found in similar contexts generally have similar meanings. In this survey paper we look at the development of some of the most popular of these techniques from a mathematical as well as data structure perspective, from Latent Semantic Analysis to Vector Space Models to their more modern variants which are typically referred to as word embeddings. In this review of algoriths such as Word2Vec, GloVe, ELMo and BERT, we explore the idea of semantic spaces more generally beyond applicability to NLP.
作者 Peter J. Worth Peter J. Worth(Dept. of Computer Science and Electrical Engineering, Florida Atlantic University, Boca Raton, FL, USA)
出处 《International Journal of Intelligence Science》 2023年第1期1-21,共21页 智能科学国际期刊(英文)
关键词 Natural Language Processing Vector Space Models Semantic Spaces Word Embeddings Representation Learning Text Vectorization Machine Learning Deep Learning Natural Language Processing Vector Space Models Semantic Spaces Word Embeddings Representation Learning Text Vectorization Machine Learning Deep Learning
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部