期刊文献+

Efficient People Detection with Infrared Images

Efficient People Detection with Infrared Images
下载PDF
导出
摘要 This work focuses on the problem of monitoring the coastline, which in Portugal’s case means monitoring 3007 kilometers, including 1793 maritime borders with the Atlantic Ocean to the south and west. The human burden on the coast becomes a problem, both because erosion makes the cliffs unstable and because pollution increases, making the fragile dune ecosystem difficult to preserve. It is becoming necessary to increase the control of access to beaches, even if it is not a popular measure for internal and external tourism. The methodology described can also be used to monitor maritime borders. The use of images acquired in the infrared range guarantees active surveillance both day and night, the main objective being to mimic the infrared cameras already installed in some critical areas along the coastline. Using a series of infrared photographs taken at low angles with a modified camera and appropriate filter, a recent deep learning algorithm with the right training can simultaneously detect and count whole people at close range and people almost completely submerged in the water, including partially visible targets, achieving a performance with F1 score of 0.945, with 97% of targets correctly identified. This implementation is possible with ordinary laptop computers and could contribute to more frequent and more extensive coverage in beach/border surveillance, using infrared cameras at regular intervals. It can be partially automated to send alerts to the authorities and/or the nearest lifeguards, thus increasing monitoring without relying on human resources. This work focuses on the problem of monitoring the coastline, which in Portugal’s case means monitoring 3007 kilometers, including 1793 maritime borders with the Atlantic Ocean to the south and west. The human burden on the coast becomes a problem, both because erosion makes the cliffs unstable and because pollution increases, making the fragile dune ecosystem difficult to preserve. It is becoming necessary to increase the control of access to beaches, even if it is not a popular measure for internal and external tourism. The methodology described can also be used to monitor maritime borders. The use of images acquired in the infrared range guarantees active surveillance both day and night, the main objective being to mimic the infrared cameras already installed in some critical areas along the coastline. Using a series of infrared photographs taken at low angles with a modified camera and appropriate filter, a recent deep learning algorithm with the right training can simultaneously detect and count whole people at close range and people almost completely submerged in the water, including partially visible targets, achieving a performance with F1 score of 0.945, with 97% of targets correctly identified. This implementation is possible with ordinary laptop computers and could contribute to more frequent and more extensive coverage in beach/border surveillance, using infrared cameras at regular intervals. It can be partially automated to send alerts to the authorities and/or the nearest lifeguards, thus increasing monitoring without relying on human resources.
作者 Maria da Conceição Proença Maria da Conceição Proença(Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associated Laboratory, Department of Physics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal)
出处 《Journal of Computer and Communications》 2024年第4期31-39,共9页 电脑和通信(英文)
关键词 Beach Overload People Counting Border Control People Detection Deep Learning Methods Remote Surveillance Beach Overload People Counting Border Control People Detection Deep Learning Methods Remote Surveillance
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部