期刊文献+

Quantum algorithm for soft margin support vector machine with hinge loss function

原文传递
导出
摘要 Soft margin support vector machine(SVM)with hinge loss function is an important classification algorithm,which has been widely used in image recognition,text classification and so on.However,solving soft margin SVM with hinge loss function generally entails the sub-gradient projection algorithm,which is very time-consuming when processing big training data set.To achieve it,an efficient quantum algorithm is proposed.Specifically,this algorithm implements the key task of the sub-gradient projection algorithm to obtain the classical sub-gradients in each iteration,which is mainly based on quantum amplitude estimation and amplification algorithm and the controlled rotation operator.Compared with its classical counterpart,this algorithm has a quadratic speedup on the number of training data points.It is worth emphasizing that the optimal model parameters obtained by this algorithm are in the classical form rather than in the quantum state form.This enables the algorithm to classify new data at little cost when the optimal model parameters are determined.
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第4期32-41,共10页 中国邮电高校学报(英文版)
基金 supported by the Beijing Natural Science Foundation(4222031) the National Natural Science Foundation of China(61976024,61972048) Beijing University of Posts and Telecommunications(BUPT)Innovation and Entrepreneurship Support Program(2021-YC-A206)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部