期刊文献+

生物信息学分析方法Ⅰ:全基因组关联分析概述 被引量:8

An Overview of Genome-wide Association Studies in Plants
原文传递
导出
摘要 全基因组关联分析(GWAS)是动植物复杂性状相关基因定位的常用手段。高通量基因分型技术的应用极大地推动了GWAS的发展。在植物中,利用GWAS不仅能够以较高的分辨率在全基因组水平鉴定出各种自然群体特定性状相关的基因或区间,而且可揭示表型变异的遗传架构全景图。目前,人们利用GWAS分析方法已在拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、小麦(Triticum aestivum)、玉米(Zea mays)和大豆(Glycine max)等模式植物和重要农作物品系中发掘出与各种性状显著相关的数量性状座位(QTL)及其候选基因位点,阐明了这些性状的遗传基础,并为揭示这些性状背后的分子机理提供候选基因,也为作物高产优质品种的选育提供了理论依据。该文对GWAS的方法、影响因素及数据分析流程进行了详细描述,以期为相关研究提供参考。 Genome-wide association study(GWAS)is a general approach for unraveling genetic variations associated with complex traits in both animals and plants.The development of high-throughput genotyping has greatly boosted the development and application of GWAS.GWAS is not only used to identify genes/loci contributing to specific traits from diversenatural populations with high-resolution genome-wide markers,it also systematically reveals the genetic architecture underlying complex traits.During recent years,GWAS has successfully detected a large number of QTLs and candidate genes associated with various traits in plants including Arabidopsis,rice,wheat,soybean and maize.All these findings provided candidate genes controlling the traits and theoretical basis for breeding of high-yield and high-quality varieties.Here we review the methods,the factors affecting the power,and a data analysis pipeline of GWAS to provide reference for relevant research.
作者 赵宇慧 李秀秀 陈倬 鲁宏伟 刘羽诚 张志方 梁承志 Yuhui Zhao;Xiuxiu Li;Zhuo Chen;Hongwei Lu;Yucheng Liu;Zhifang Zhang;Chengzhi Liang(Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《植物学报》 CAS CSCD 北大核心 2020年第6期715-732,共18页 Chinese Bulletin of Botany
基金 中国科学院战略性先导科技专项(No.XDA24040201)
关键词 混合线性模型 全基因组关联分析(GWAS) 生物信息学 mixed linear model genome-wide association study(GWAS) bioinformatics
  • 相关文献

参考文献3

二级参考文献64

  • 1Agrama, H., Yan, W., Lee, F., Fjellstrom, R., Chen, M.H., Jia, M., and McClung, A. (2009). Genetic assessment of a mini-core subset developed from the USDA rice genebank. Crop Sci. 49:1336-1346.
  • 2Alexandrov, N., Tai, S., Wang, W., Mansueto, L., Palls, K., Fuentes, R.R., Ulat, V.J., Chebotarov, D., Zhang, G., Li, Z., et al. (2015). SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Res. 43:D1023.
  • 3Barrett, J.C., Fry, B., Mailer, J., and Daly, M.J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263-265.
  • 4Browning, S.R., and Browning, B.L. (2007). Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J, Hum. Genet. 81:1084-1097.
  • 5Bryant, R., Proctor, A., Hawkridge, M., Jackson, A., Yeater, K., Counce, P., Yah, W., McClung, A., and Fjellstrom, R. (2011). Genetic variation and association mapping of silica concentration in rice hulls using a germplasm collection. Genetica 139:1383-1398.
  • 6Caicedo, A.L., Williamson, S.H., Hemandez, R.D., Boyko, A., Fledel- Alon, A., York, T.L., Polato, N.R., Olsen, K.M., Nielsen, R., McCouch, S.R., et al. (2007). Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet. 3:1745-1756.
  • 7Chen, W., Gao, Y., Xie, W., Gong, L., Lu, K., Wang, W., Li, Y., Liu, X., Zhang, H., Dong, H., et al. (2014). Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat. Genet. 46:714-721.
  • 8DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, Co, Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43"491-498.
  • 9Ewing, G., and Hermisson, J. (2010). MSMS: a coalescent simulation program including recombination, demographic structure and selection at a single locus. Bioinformatics 26:2064-2065.
  • 10Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X., and Zhang, Q. (2006). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112:1164-1171.

共引文献39

同被引文献101

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部