期刊文献+

多站点低空防御系统关键技术研究

Research on the Key Technologies of Multi-stationLow-altitude Defense System
下载PDF
导出
摘要 针对多站点低空防御系统中主动雷达虚警率高、近距离探测盲区大且无法分辨静止目标等问题,研究了无线电频谱探测定位、多站雷达数据融合等关键技术,提出了一种系统数据融合策略。首先利用无线电频谱探测设备测向数据约束雷达扫描范围降低雷达虚警率,然后采用多站无线电频谱探测定位技术解决雷达近距离及静止目标的探测盲区,最后借鉴了K均值(K-means)算法,对多站探测目标进行聚类融合。该系统数据融合策略被应用于某大型水电站低空防御系统,测试结果验证了该策略的有效性。 Aiming at the problems of high false alarm rate,large blind spot in close range and inability to distinguish stationary target in active radar of multi-station low-altitude defense system,the key technologies of radio detection positioning and data fusion of multistation are researched,and a data integration strategy is proposed.Firstly,the direction data of radio spectrum detection equipment is used to reduce the radar false alarm rate by restricting the radar scan range.Secondly,the multi-station radio spectrum detection and positioning technology is used to solve the detection blind spots of close range and stationary target of the radar.Finally,the K-means algorithm is improved to cluster multi-station detection targets.The data integration strategy is applied to the low-altitude defense system of a large hydropower station.Test results verify the effectiveness of the strategy.
作者 王炳琪 聂潇乾 严鹏 吴彬彬 高承帅 WANG Bing-qi;NIE Xiao-qian;YAN Peng;WU Bin-bin;GAO Cheng-shuai(Shanghai Radio Equipment Research Institute,Shanghai 201109,China)
出处 《制导与引信》 2019年第4期17-22,30,共7页 Guidance & Fuze
基金 国家科技部重点研发计划(2018YFC0809704).
关键词 低空防御 多站点 盲区 虚警 数据整合 low-altitude defense multi-station blind spot false alarm data integration
  • 相关文献

参考文献6

二级参考文献49

  • 1敬忠良,神经网络跟踪理论及应用,1995年
  • 2DENG Z L, QI R B. Multi-sensor information fusion suboptimal steady-state Kalman filter[ J]. Chinese Science Abstract, 2000, 6 (2) : 183 - 184.
  • 3CARLSON N A. Federated square root filter for decentralized parallel processes[ J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, AES-26(3) : 517 - 525.
  • 4CARLSON N A. Federated Kalman filter simulation results[ J]. Navigation, 1994,41 (3) : 297 - 321.
  • 5BAR - SHALOM Y. On the track-to-track correlation problem[ J]. IEEE Transactions on Automatic Control, 1981, AC-26(2):571 - 572.
  • 6HASHMIPOUR H R, ROY S, LAUB A J. Decentralized structures for parallel Kalman filtering[ J]. IEEE Transactions on Automatic Control, 1998, 33(1) : 88 - 93.
  • 7桑炜森,顾耀平.综合电子战新技术新算法[M].北京:国防工业出版社,1993.
  • 8Sun JG, Liu J, Zhao LY. Clustering algorithms research. Ruan Jian Xue Bao/Joumal of Software, 2008,19(1): 48-61 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/19/48.htm [doi: 10.3724/SP.J.1001.2008.00048].
  • 9Schleif FM, Zhu XB, Gisbrecht A, Hammer B. Fast approximated relational and kernel clustering. In: Proc. of the 21st Int’l Conf. on Pattern Recognition. 2012. 1229-1232.
  • 10Jia HJ, Ding SF, Xu XZ, Nie R. The latest research progress on spectral clustering. Neural Computing and Applications, 2014, 24(7-8): 1477-1486. [doi: 10.1007/s00521 -013-1439-2].

共引文献354

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部