期刊文献+

基因编辑技术在产溶剂梭菌中的应用 被引量:2

Application of gene-editing technology in solventogenic clostridia
原文传递
导出
摘要 产溶剂梭菌是一类能够利用碳源产生生物燃料的菌种,在可再生生物能源发展中具有巨大的应用潜力,但是目前针对这类菌的遗传操作工具相对匮乏,是其应用于工业生产的阻碍;在分子遗传学快速发展的背景之下,基因编辑技术成为研究微生物代谢调控机制以及遗传改造的首选工具.本文首先从来源组成、基本原理以及工作机制等方面分别介绍应用于产溶剂梭菌中不同类型的基因编辑技术,指出各自的优缺点;接着提出基因编辑技术在产溶剂梭菌中的3大应用前提:(1)掌握基因组序列信息,(2)突破自身限制性酶修饰系统的屏障,(3)建立外源DNA转化方法;进一步按照时间脉络综述基因编辑技术在产溶剂梭菌中的发展以及编辑工具的不断优化过程,描述其从随机失活到精准靶向失活、从低的转化效率到高效基因编辑的技术进步.针对CRISPR目前存在的Cas蛋白毒性问题、HDR的重组效率以及脱靶效应等技术难题,指出未来在产溶剂梭菌中应尝试探索攻克这些难题的方向,对产溶剂梭菌进一步的遗传改造,从而实现更高的工业应用价值. Solventogenic clostridia are bacteria that can use carbon sources to produce biofuels,and they have great potential for application in renewable bioenergy.However,few manipulation tools for these bacteria have been developed in recent years,thus hindering their application in industrial production.With the rapid development of molecular genetics,gene-editing technology has become the preferred tool for studying microbial metabolism,regulation mechanisms,and genetic modification.We first introduce various types of gene-editing technologies applied to solventogenic clostridia in terms of source composition,basic principles,and working mechanisms and we highlight their respective advantages and disadvantages.In addition,three prerequisites for the application of gene-editing technology in solventogenic clostridia are proposed:(1)master genome sequence information,(2)breaking the barriers of its own restriction-modification system,and(3)establishment of a method for exogenous DNA transformation.We then review the application of gene-editing technology and the continuous optimization process of editing tools in solventogenic clostridia according to the time context.We describe the technological progress achieved from random inactivation to precisely targeted inactivation and from low transformation efficiency to efficient gene editing.Finally,we propose the current Cas protein toxicity problems,the recombination efficiency of HDR,and off-target effects in CRISPR,highlighting the broad application prospects of CRISPR technology in solventogenic clostridia and the directions that can be attempted in the future,looking forward to furthering genetic modification of solventogenic clostridia to achieve higher industrial application value.
作者 陆琪 吴静 陶勇 LU Qi;WU Jing;TAO Yong(Key Laboratory of Environmental and Applied Microbiology,Chengdu Institute of Biology,Chinese Academy of Sciences&Environmental Microbiology Key Laboratory of Sichuan Province,Chengdu 610041,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2023年第2期466-473,共8页 Chinese Journal of Applied and Environmental Biology
基金 国家自然科学基金项目(31770090) 四川科技计划项目(2021YJ0022) 四川科技成果转移转化项目(2021ZHCG0033)资助
关键词 基因编辑 丙酮丁醇梭菌 拜氏梭菌 CRISPR-Cas系统 产溶剂基因功能 gene editing Clostridium acetobutylicum Clostridium beijerinckii CRISPR-Cas system solventgenerating gene function
  • 相关文献

参考文献2

二级参考文献10

  • 1Green EM, Boynton ZL, Harris LM, et al. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 1996; 142 ( Pt 8):2079- 2086.
  • 2Nair RV, Green EM, Watson DE, Bennett GN, Papoutsakis ET. Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J Bacterial 1999: 181:319-330
  • 3Nakotte S, Schaffer S, Bohringer M, Durre E Electroporation of, plasmid isolation from and plasmid conservation in Clostridium acetobutylicum DSM 792. Appl Microbiol Biotechnol 1998; 50:564-567.
  • 4Harris LM, Welker NE, Papoutsakis ET. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacterial 2002; 184:3586-3597.
  • 5Chen Y, McClane BA, Fisher D J, Rood JI, Gupta P. Construction of an alpha toxin gene knockout mutant of Clostridium perfringens type A by use of a mobile group Ⅱ intron. Appl Environ Microbial 2005; 71:7542-7547.
  • 6Lee SY, Bennett GN, Papoutsakis ET. Construction of Escherichia-coli Clostridium-acetobutylicum shuttle vectors and transformation of Clostridium-acetobutylicum strains. B iotechnol Lett 1992; 14:427-432.
  • 7Harris LM, Desai RP, Welker NE, Papoutsakis ET. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 2000; 67:1-11.
  • 8Harris LM, Blank L, Desai RP, Welker NE, Papoutsakis ET. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol 2001; 27:322-328.
  • 9Lee SY, Mermelstein LD, Papoutsakis ET. Determination of plasmid copy number and stability in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Lett 1993; 108:319-323.
  • 10Heap JT, Pennington O J, Cartman ST, Carter GP, Minton NP. The ClosTron: A universal gene knock-out system for the genus Clostridium. J Microbiol Methods 2007; 70:452-464.

共引文献25

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部