期刊文献+

基于LSTM神经网络的混合燃料HCCI发动机复杂工况下燃烧正时估计 被引量:6

Combustion timing estimation of the HCCI engine with mixed fuel under complex operating conditions based on LSTM neural network
下载PDF
导出
摘要 均质充气压缩点燃(HCCI)发动机可以通过喷射混合燃料来拓宽工作范围,但也增加了复杂工况下燃烧正时估计的难度。为此,基于长短期记忆(LSTM)神经网络,建立了黑箱模型,用以复杂工况下使用混合燃料的HCCI发动机燃烧正时估计。首先,对多输入数据变量进行Z-Score标准化,使输入数据变换到同一数量级。其次,通过主成分分析法(PCA)对多输入数据变量进行筛选,降低数据维度。最后,用LSTM神经网络对选出的燃烧正时影响相关因素和实际燃烧正时之间的非线性关系进行建模。FTP工况下与其他方法对比验证表明,LSTM模型的各项评价指标均优于SVR和BP模型,其决定系数R2达到了0.98978。 By injecting the mixed fuel into the homogeneous charge compression ignition(HCCI)engine,its working range can be extended.However,the difficulty of combustion timing estimation under complex operating conditions is increased.Therefore,a black box model is formulated,which is based on the long short-term memory(LSTM)neural network.The combustion timing of HCCI engine can be estimated under complex conditions using mixed fuel.Firstly,Z-SCORE standardization is implemented on multi-input data variables.The input data are transformed into the same order of magnitude.Secondly,the principal component analysis is used to filter multi-input data variables to reduce data dimension.Finally,LSTM neural network is utilized to model the nonlinear relationship between the selected combustion timing influencing factors and the actual combustion timing.Compared with other methods under the FTP working condition,results show that the evaluation indicators of the LSTM model are better than those of SVR and BP models.The determination coefficient R^2 reaches 0.98978.
作者 郑太雄 贺吉 张良斌 Zheng Taixiong;He Ji;Zhang Liangbin(School of Advanced Manufacturing Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第10期100-110,共11页 Chinese Journal of Scientific Instrument
基金 重庆市自然科学基金(CSTC2018JCYJA0648)项目资助
关键词 均质充气压缩点燃发动机 燃烧正时 长短期记忆神经网络 黑箱模型 homogeneous charge compression ignition combustion timing long short-term memory black box mode
  • 相关文献

参考文献2

二级参考文献37

  • 1YAO M, ZHENG Z, LIU H. Progress and recent trends in homogeneous charge compression ignition (HCCI) en- gines[ J ]. Progress in Energy and Combustion Science, 2009,35 (5) :398-437.
  • 2NESHAT E, SARAY R K. An optimized chemical kinet- ic mechanism for HCCI combustion of PRFs using multi- zone model and genetic algorithm [ J ]. Energy Conver- sion and Management, 2015:172-183.
  • 3PACHECO A F, MARTINS M E S, ZHAO H. New Eu- ropean Drive Cycle (NEDC) simulation of a passenger car with a HCCI engine: Emissions and fuel consumption results [J~. Fuel, 2013:733-739. S.
  • 4HAVER G M, GERDES J C, ROELLE M J. Physics- based modeling and control of residual-affected HCCI en- gines[J]. Journal of Dynamic Systems, Measurement, and Control, 2009,131 (2) :2100201-2100212.
  • 5RAUSENN D J, STEFANOPOULU A G, KANG J, et al. A mean-value model for control of homogeneous charge compression ignition (HCCI) engines[ J]. Journal of Dy- namic Systems, Measurement, and Control, 2005, 127 (3) :355-362.
  • 6WIDD A, EKHOLM K, TUNESTAL P, et al. Physics- Based Model Predictive Control of HCCI Combustion Pha- sing Using Fast Thermal Management and VVA [ J ]. IEEE Transactions on Control Systems Technology, 2012,20(3) :688-699.
  • 7KUGIMACHI Y, NAKAMURA Y, IIDA N. Model-based combustion control of a HCCI engine using external EGR and the exhaust rebreathed [ R ]. SAE Technical Paper, 2014.
  • 8ANDWARI A M, AZIZ A A, SAID M F M, et al. Ex- perimental investigation of the influence of internal and external EGR on the combustion characteristics of a con- trolled auto-ignition two-stroke cycle engine[ J]. Applied Energy, 2014,134 : 1-10.
  • 9GERARD D, BESSON M, HARDY J, et at. HCCI com- bustion on a diesel VCR engine [ R ]. SAE Technical Pa- per, 2008.
  • 10BIDARVATAN M, SHAHBAKHIT M, JAZAYERI S A, et al. Cycle-to-cycle modeling and sliding mode control of blended-fuel HCCI engine [ J ]. Control Engineering Prac-tice, 2014,24:79-91.

共引文献16

同被引文献84

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部