期刊文献+

基于MAResnet的脑电情感识别研究 被引量:6

Research on EEG emotion recognition based on MAResnet
下载PDF
导出
摘要 情感是大脑活动的一种表现形式,与心理活动和日常生活密切相关。利用脑电情感数据库并依据心理效价和唤醒度情感划分模型,对压力、平静、轻松、沮丧和快乐5种情感进行研究分析。针对脑电信号时空特征结合的特点,以深度学习中的残差神经网络为基础,提出基于多尺度注意力残差网络(MAResnet)的脑电情感信号分类模型。通过在传统的残差学习模块中加入注意力机制并在同一空间位置并联使用不同尺寸的卷积核,从而对脑电情感信号进行了多尺度特征提取,并对神经网络通过残差学习来避免网络退化。实验结果表明,改进后的多尺度注意力残差网络的分类精度为85.2%,较传统残差网络的分类精度提升了17.7%,较已有相似研究如应用SVM、KNN等方法在分类类型和识别精度上都有显著提升,证明该方法的有效性。 Emotion is a manifestation of brain activity,which is closely related to psychological activity and daily life.Using the publicly available EEG emotional database on the Internet and the emotional classification model based on psychological valence and arousal degree,the five emotions of stress,calmness,relaxation,depression and happiness are studied and analyzed.Aiming at the characteristics of the temporal and spatial feature combination of EEG signals,based on the residual neural network in deep learning,an EEG emotional signal classification model based on multi-scale attention residual networks(MAResnet)is proposed.Through adding attention mechanism into the traditional residual learning module and using the convolution kernels with different sizes in parallel in the same space,the multi-scale features of EEG emotional signals are extracted,and residual learning is performed on the neural network to avoid network degradation.The experiment results show that the classification accuracy of the improved multi-scale attention residual network is 85.2%,which is 17.7%higher than that of the traditional residual network.Compared with the existing similar research such as SVM,KNN and other methods,the classification type and recognition accuracy are significantly improved,which proves the effectiveness of the method.
作者 柳长源 孙雨涵 李文强 兰朝凤 Liu Changyuan;Sun Yuhan;Li Wenqiang;Lan Chaofeng(College of Electrical and Electronic Engineering,Harbin University of Science and Technology,Harbin 150080,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第7期235-242,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(11804068) 黑龙江省自然科学基金(F2016022)资助
关键词 脑电信号 情感识别 注意力机制 多尺度残差神经网络 EEG signal emotion recognition attention mechanism multi-scale residual net
  • 相关文献

参考文献7

二级参考文献40

  • 1赵腊生,张强,魏小鹏.语音情感识别研究进展[J].计算机应用研究,2009,26(2):428-432. 被引量:21
  • 2赵军圣,庄光明,王增桂.极大似然估计方法介绍[J].长春理工大学学报(自然科学版),2010,33(6):53-54. 被引量:25
  • 3綦宏志,程龙龙,陈滨津,赵翔,明东,万柏坤.想象动作中动态脑电的信息熵研究[J].中国生物医学工程学报,2007,26(1):74-77. 被引量:6
  • 4林奕琳,韦岗,杨康才.语音情感识别的研究进展[J].电路与系统学报,2007,12(1):90-98. 被引量:33
  • 5COWIE R, DOUGLAS-COWIE E, TSAPATSOULIS N, et al. Emotion recognition in human-computer in- teraction [ J ]. Signal Processing Magazine, IEEE, 2001, 18(1) : 32-80.
  • 6CHANEL G, KRONEGG J,GRANDJEAN D,et al.Multimedia content representation, classification and se-curity-Emotion assessment : Arousal evaluation usingEEG and peripheral physiological signals [ M ]. SpringerBerlin Heidelberg, 2006 : 530-537.
  • 7CHANEL G, KIERKELS J J M, SOLEYMANI M,et al.Short-term emotion assessment in a recall paradigm[ J].International Journal of Human-Computer Studies,2009,67(8): 607-627.
  • 8CHANEL G, REBETEZ C, B6TRANCOURT M, et al.Emotion assessment from physiological signals for adapta-tion of game difficulty [ J]. IEEE Transactions on, Sys-tems, Man and Cybernetics, Part A: Systems and Hu-mans, 2011,41(6): 1052-1063.
  • 9LIN Y P,WANG C H,JUNG T Pf et al. EEG-basedemotion recognition in music listening [ J ]. IEEE Trans-actions on Biomedical Engineering, 2010, 57 ( 7 ):1798-1806.
  • 10ALZOUBI O, CALVO R A, STEVENS R H. Advancesin artificial intelligence-Classification of EEG for af-fect recognition : an adaptive approach [ M ]. Springer Ber-lin Heidelberg, 2009: 52-61.

共引文献69

同被引文献26

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部