期刊文献+

基于孪生非负矩阵分解的车脸重识别算法 被引量:3

Vehicle face re-identification algorithm based on siamese nonnegative matrix factorization
下载PDF
导出
摘要 受光照强度变化影响,同一车辆在不同时段采集的车脸图像可能会存在差异,如车身颜色、车灯状态等,为了使识别方法对多种光照条件具有普适性,提出了一种孪生非负矩阵分解模型。首先,将每一对训练样本车脸图像的初始特征分配在两个非负矩阵分解模型中;然后,融合分解后的误差损失,类内损失,类间损失,设计了一种孪生非负矩阵分解模型,其中,两个非负矩阵分解模型共享同一特征基;最后,基于梯度下降法对模型进行求解,获得共享特征基,并基于余弦距离实现了车脸图像的匹配。实验结果表明,对于存在一定光照差异条件下采集的两幅车脸图像,提出的算法仍能获得较为准确的重识别结果,错误接受率与错误拒绝率均可降低至6%以下。 The light intensity variation may bring some differences among vehicle face images which are captured at different times such as vehicle color difference,headlight status difference,etc.To make the recognition method universal to multiple lighting conditions,a novel siamese nonnegative matrix factorization(NMF)model is formulated.First,the original features of each pair of vehicle face training images are split and taking as the input of two NMF models.Then,a siamese NMF model is established by fusing the error loss,the intra-class loss and the inter-class loss.The same feature basis vectors are shared by these two NMF models.Finally,the model is solved by using the gradient descent algorithm.Thus,the shared feature basis vectors can be acquired,and the re-identification of vehicle face images can be achieved based on the cosine distance.Experimental results show that the proposed algorithm can achieve accurate re-identification results even when two vehicle face images are captured under different lighting conditions.Both the false accept rate and the false reject rate can be reduced to be below 6%.
作者 贾旭 孙福明 Jia Xu;Sun Fuming(School of Electronics and Information Engineering,Liaoning University of Technology,Jinzhou 121001,China;School of Electronics and Communication Engineering,Dalian Minzu University,Dalian 116600,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第6期132-139,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61572244) 辽宁省自然科学基金计划指导计划项目(2019-ZD-0700) 辽宁省高等学校国外培养项目(2019GJWYB015)资助
关键词 车脸重识别 非负矩阵分解 梯度下降法 车脸特征提取 vehicle face re-identification nonnegative matrix factorization gradient descent algorithm vehicle face feature extraction
  • 相关文献

参考文献3

二级参考文献23

  • 1李刚,曾锐利,林凌,王蒙军.基于数学形态学的车牌定位算法[J].仪器仪表学报,2007,28(7):1323-1327. 被引量:67
  • 2王科俊,袁智.基于小波矩融合PCA变换的手指静脉识别[J].模式识别与人工智能,2007,20(5):692-697. 被引量:32
  • 3ANGELINE L, KOW W Y, KHONG W L, et al. l,i- eense plate character recognition via signature analvsis and features extraction [C]. IEEE International Confer- ence on Computational Intelligence, Modelling and Sinm- lation, 2012: 1-6.
  • 4DUN J Y, ZHANG S Y, YE X Z, et al. Chinese license plate localization in muhi-l,ane with complex background based on concomitant Colors [ J ]. IEEE Intelligent Transportation Systems Magazine , 2015, 7 ( 3 ) : 51-61.
  • 5ASHTARI A H, NORDIN M J, FATHY M. An h'anian li- cense plate recognition system based on color teatures[ J ]. IEEE Transaetions on Intelligent Transportation Systems, 2014, 15(4): 1690-1705.
  • 6LU Y W, ZHANG J M, WAN(. S M. Research of vehi- cle license plate lo('ati(m based ~m wavelet transform [ J I. Computer Engineering and Design, 2()12, 33 ( 4 ) : 1491-1494.
  • 7CANNY J. A e()mputational approach to edge detection[ J]. IEEE Transaetions on Pattern Analysis and Machine Intel- lige,we, 1986, 8 (6) : 679-698.
  • 8BRADSKIG.KAEBLERA.学习OpenCV[M].北京:清华大学出版社,2014:173-175.
  • 9OTSU N. A threshold selection method from gray level histograms [ J 1. IEEE Transactions on System, Man and Cybernetit.s, 1979,9( 1 ) :62-66.
  • 10刘铁根,王云新,李秀艳,江俊峰,周苏晋.基于手背静脉的生物特征识别系统[J].光学学报,2009,29(12):3339-3343. 被引量:10

共引文献30

同被引文献13

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部