摘要
目的:以盆底功能障碍性疾病专病队列临床诊疗数据为基础建立临床科研平台,实现临床业务数据到科研数据的自动转化,加速成果产出及转化。方法:结合临床诊疗实际,制定针对盆底功能障碍性疾病的专病队列研究的核心数据指标,利用提取—转化—加载(ETL)技术,统一清洗并存储临床业务数据,对原业务系统存在的结构化指标进行映射和归一,对非结构化内容进行人工标注及机器学习训练,利用自然语言处理技术进行后结构化治理,建立基于Elasticsearch搜索分析引擎的专病数据模型,构建盆底功能障碍性疾病临床科研平台。结果:专病队列临床科研平台基于底层全结构化标准数据库,可提供全量病历信息全息展示,实现了临床诊疗信息到科学研究数据的自动转换,提高了科研队列纳排入组的效率,有利于挖掘提升临床诊断治疗的深度信息。结论:基于盆底功能障碍性疾病专病队列的临床科研平台可实现临床研究试验病例快速配置,加速临床科研成果产出及转化,可为后续拓展基于数据库的专科管理及辅助决策提供支持。
Objective To establish a clinical research platform based on clinical diagnosis and treatment data of the special disease cohort of pelvic floor dysfunction,realize the automatic transformation of clinical business data to research data,and accelerate the output and transformation of achievements.Methods Combining with the practice of clinical diagnosis and treatment,the core data indicators for research of the special disease cohort of pelvic floor dysfunction diseases were formulated,and the clinical business data were uniformly cleaned and stored by using the Extract-Transform-Load(ETL)technology.The structured indicators existing in the original business system were mapped and normalized,and the unstructured content was manually labeled and trained with machine learning.Natural language processing technology was used for post-structured governance,to establish a special disease data model based on Elasticsearch search and analysis engine,and to build a clinical research platform for pelvic floor dysfunction diseases.Results Based on the underlying fully structured standard database,the clinical research platform of the special disease cohort can provide holographic display of full medical record information,realize the automatic conversion of clinical diagnosis and treatment information to research data,improve the efficiency of research cohort enrollment,and is conducive to mining and improving the in-depth information of clinical diagnosis and treatment.Conclusion The clinical research platform based on the special disease cohort of pelvic floor dysfunction diseases can realize the rapid allocation of clinical research trial cases,accelerate the output and transformation of clinical research results,and provide support for the subsequent expansion of database-based specialty management and auxiliary decision-making.
作者
崔陶
陈悦悦
梅玲
魏冬梅
余晓鹃
石薇
王涛
牛晓宇
Cui Tao;Chen Yueyue;Mei Ling;Wei Dongmei;Yu Xiaojuan;Shi Wei;Wang Tao;Niu Xiaoyu(Department of Obstetrics and Gynecology,West China Second University Hospital,Sichuan University,Key Laboratory of Birth Defects and Related Diseases of Women and Children,Chengdu 610041,Sichuan Province,China)
出处
《中国数字医学》
2022年第9期66-72,99,共8页
China Digital Medicine
基金
国家科技部,国家十四五重点研发计划(2021YFC2009100)
关键词
盆底功能障碍性疾病
专病队列
临床科研平台
大数据
Pelvic floor dysfunction disease
Special disease cohort
Clinical research platform
Big data