期刊文献+

基于语谱图与稠密卷积神经网络的性别与年龄识别研究 被引量:3

Gender and Age Recognition Based on Spectrogram and Dense Convolutional Neural Network
下载PDF
导出
摘要 针对传统的特征提取算法与分类识别模型对说话人年龄的识别精确度较低,且受外界噪声影响较大等问题,提出了一种结合改进型语谱图与自建DenseNets网络对性别与年龄识别的方法。首先制作语谱图数据集并改进语谱图的特征提取方式,然后搭建网络模型对语谱图进行分类识别,最后对算法模型的性能进行分析,并实现在线识别说话人的声纹特征。实验结果表明:该算法模型可以有效识别说话人的性别与年龄区间,具有一定的实用意义。 In view of the low accuracy of speaker age recognition by traditional feature extraction algorithms and classification recognition models,and the great influence of external noise,a method for gender and age recognition is proposed by combining the improved language spectrograph and self-built DenseNets network.Firstly,the spectrogram data set is made and the feature extraction method of spectrogram is improved.Then,a network model is built to classify and recognize the spectrogram.Finally,the performance of the algorithm model is analyzed and online recognition of the speaker’s voice print features is realized.The experimental results show that the proposed algorithm can effectively identify the speaker’s gender and age range,and has certain practical value.
作者 朱梦帆 汪志成 戴诗柏 ZHU Mengfan;WANG Zhicheng;DAI Shibai(School of Mechanical and Electronic Engineering,East China University of Technology,Nanchang 330013,China)
出处 《仪表技术》 2022年第1期66-70,73,共6页 Instrumentation Technology
关键词 语谱图 稠密卷积神经网络 性别识别 年龄识别 spectrogram dense convolutional neural network gender recognition age recognition
  • 相关文献

参考文献5

二级参考文献44

  • 1岳倩倩,周萍,景新幸.基于非线性幂函数的听觉特征提取算法研究[J].微电子学与计算机,2015,32(6):163-166. 被引量:5
  • 2Attabi Y, Dumouchel P. Anchor models for emotion recognition from speech [ J ]. IEEE Transactions on Af- fective Computing, 2013, 4(3) : 280-290.
  • 3Ramakrishnan S, E1 Emary I M M. Speech emotion recognition approaches in human computer interaction [J]. Telecommunication Systems, 2013, 52(3) : 1467 - 1478.
  • 4Lee A K C, Larson E, Maddox R K, et al. Using neu- roimaging to understand the cortical mechanisms of au- ditory selective attention[J]. Hearing Research, 2014, 307:111 - 120.
  • 5Minker W, Pittermann J, Pittermann A, et al. Challen- ges in speech-based human-computer interfaces [ J ]. In- ternational Journal of Speech Technology, 2007, 10 ( 2/ 3) :109- 119.
  • 6Zhao X M, Zhang S Q, Lei B C. Robust emotion rec- ognition in noisy speech via sparse representation [ J ]. Neural Computing and Applications, 2014, 24 ( 7/8 ) : 1539 - 1553.
  • 7Huang C W, Chen G M, Yu H, et al. Speech emotion recognition under white noise [ J ]. Archives of Acous- tics, 2013, 38(4): 457-463.
  • 8Yan J J, Wang X L, Gu W Y, et al. Speech emotion recognition based on sparse representation[ J]. Archives of Acoustics, 2013, 38(4) : 465 -470.
  • 9Wu C H, Liang W B. Emotion recognition of affective speech based on multiple classifiers using acoustic-pro- sodic information and semantic labels [ J ]. IEEE Trans- actions on Affective Computing, 2011,2( 1 ) : 10 - 21.
  • 10Bozkurt E, Erzin E, Erdem C E, et al. Formant posi- tion based weighted spectral features for emotion recog- nition[ J]. Speech Communication, 2011,53(9) : 1186 - 1197.

共引文献110

同被引文献20

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部