摘要
The Li-Mg-N-H hydrogen storage system is a promising hydrogen storage material due to its moderate operation temperature,good reversibility,and relatively high capacity.In this work,the Li-Mg-N-H composite was directly synthesized by reactive ball milling(RBM) of Li3N and Mg powder mixture with a molar ratio of 2:1 under hydrogen pressure of 9 MPa.More than 8.8 wt%hydrogen was absorbed during the RBM process.The phases and structural evolution during the in situ hydrogenation process were analyzed by means of in situ solidgas absorption and ex situ X-ray diffraction(XRD) measurements.It is determined that the hydrogenation can be divided into two steps,leading to mainly the formation of a lithium magnesium imide phase and a poorly crystallized amide phase,respectively.The H-cycling properties of the as-milled composite were determined by temperature-programmed dehydrogenation(TPD) method in a closed system.The onset dehydrogenation temperature was detected at 125℃,and it can reversibly desorb 3.1 wt% hydrogen under a hydrogen back pressure of 0.2 MPa.The structural evolution during dehydrogenation was further investigated by in situ XRD measurement.It is found that Mg(NH_(2))_(2)phase disappears at about 200 ℃,and Li_(2)Mg_(2)N_(3)H_(3),LiNH_(2),and Li_(2)MgN_(2)H_(2)phases coexist at even 300 ℃,revealing that the dehydrogenation process is step-wised and only partial hydrogen can be desorbed.
出处
《Rare Metals》
SCIE
EI
CAS
CSCD
2022年第12期4223-4229,共7页
稀有金属(英文版)
基金
financially supported by the Beijing Science and Technology Program(No.D141100002014002)
the European COST Action(No.MP1103)