期刊文献+

预测COVID-19感染风险的医疗决策机器学习方法研究

Research on Medical Decision Machine Learning Method for Predicting COVID-19 Infection Risk
下载PDF
导出
摘要 开发一种机器学习模型,用于预测个体是否处于受COVID-19(COrona VIrus Disease 2019)影响的危险之中,并辅助医疗决策,包括就医或选择居家隔离。基于GradientBoost、XGBoost、随机森林3种集成学习算法以及决策树、逻辑回归、支持向量机、KNN算法4种非集成学习算法,构建COVID-19风险预测模型并验证模型效能,识别COVID-19风险因素。集成学习与非集成学习模型ROC曲线下面积大致都在0.94左右。同时识别出年龄、是否是住院患者、是否携带病毒、是否怀孕、是否患有肺炎、是否插氧等重要风险因素。结果表明,在大样本量下集成学习不一定会优于非集成学习方法。 To develop a machine learning model to predict whether an individual is at risk from COVID-19(Corona Virus Disease 2019)and to aid medical decisions,including seeking medical attention or choosing home isolation.Based on three integrated learning algorithms,GradientBoost,XGBoost and Stochastic Forest,as well as four non-integrated learning algorithms including decision tree,logistic regression,support vector machine and KNN(K-Nearest Neighbor)algorithm were used to construct a COVID-19 risk prediction model.We validated the model efficiency,and identified the COVID-19 risk factors.The area under ROC(Receiver Operating Characteristic)curve of both integrated learning and non-integrated learning models was approximately 0.94.Important risk factors,such as age,hospitalization,infection,pregnancy,pneumonia,and oxygen insertion,were also identified.Integrated learning is not necessarily superior to non-integrated learning in large sample size.
作者 国威 陈广新 于淼 于广浩 郭金兴 GUO Wei;CHEN Guang-xin;YU Miao;YU Guang-hao;GUO Jin-xing(School of Life Sciences,Mudanjiang Medical College,Mudanjiang,Heilongjiang 157011,China;School of Medical Imaging,Mudanjiang Medical College,Mudanjiang,Heilongjiang 157011,China;Red Flag Hospital Affiliated to Mudanjiang Medical College,Mudanjiang,Heilongjiang 157011,China)
出处 《新一代信息技术》 2023年第13期12-17,共6页 New Generation of Information Technology
基金 2021年黑龙江省省属高校基本科研业务费科研项目(No.2021-KYYWF-0494) 黑龙江省卫生健康委员会科技(资助)项目(No.20220909040626)
关键词 新冠肺炎 COVID-19 机器学习 医疗资源分配 预测模型 novel coronavirus pneumonia COVID-19 machine learning allocation of medical resources prediction model
  • 相关文献

参考文献8

二级参考文献124

  • 1高微波,邓鹏飞,杨全新,何拓,李晓会,王琳,陈吉新,贺心畋,陈欣.基于DCE-MRI影像组学鉴别乳腺良恶性肿块的可行性研究[J].临床放射学杂志,2020,39(4):674-679. 被引量:12
  • 2沈亿亿,林凯,方文娟.新冠肺炎疫情对某三甲公立医院运营的影响分析[J].医院管理论坛,2020(12):27-29. 被引量:6
  • 3朱红霞,沈炯,王培红,李益国.基于免疫遗传算法的模糊优化控制及其仿真[J].东南大学学报(自然科学版),2005,35(1):64-68. 被引量:17
  • 4GuoG D, Zhang H J. Boosting for Fast Face Recognition. In: Proc of 2nd International Workshop on Recognition, Analysis and Tracking of Faces and Gestures in Real-Time Systems. Vancouver, Canada, 2001, 96- 100.
  • 5Abney S, Schapire R E, Singer Y. Boosting Applied to Tagging and PP Attachment. ln: Proc of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora. New Brunswick, NJ, 1999, 38-45.
  • 6Rochery M, Schapire R E, Rahim M, Gupta N. BoosTexter for Text Categorization in Spoken Language Dialogue. In: Autmmtic Speech Recognition and Understanding Workshop. Madonna di Campiglio Trento, Italy, 2001. Available at http://www, cs.princeton, edu/-schapire/publist, html.
  • 7Rochery M, Schapire R, Rahim M, Gupta N, Riceardi G, Bangalore S, Alshawi H, Douglas S. Combining Prior Knowledge and Boosting for Call Class~flcat~on in Spoken Language DiaLogue. In:Proc of International Conference on Aceousties, Speech and Signal. Orlando, Florida. 2002. Available at http://www, cs/princetonedu/-schapire/whatsnew. html.
  • 8Schapire R E, Singer Y. BcosTexter: A Bcosting-Based System for Text Categorization. Machine Learning, 2000, 39(2- 3): 135- 168.
  • 9Schapire R E, Rochery M, Rahim M, Gupta N. Incorporating Prior Knowledge into Boosting. In: Proc of the 19th International Conference on Machine Learning. Sydney, 2002, 538 - 545.
  • 10Schwenk H, Bengio Y. Adal3oosting Neural Networks: Application to On-Line Character Recognition. In: Proc of the International Conference on Artificial Neural Networks ( ICANN' 97 ). Lausanne, Switzerland: Springer-Verlag, 1997, 967-972.

共引文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部