期刊文献+

基于改进CNN的药用植物叶片分类研究

Research on Classification of Medicinal Plant Leaves Based on Improved CNN
下载PDF
导出
摘要 传统的植物叶片分类方法往往难以满足准确性和效率性的要求,本研究引入了VGG16模型作为改进的解决方案,旨在提高药用植物叶片分类的准确性和自动化程度。以基准CNN(Convolutional Neural Networks)模型在数据集上进行评估,用VGG16模型与基准CNN模型比较效果。VGG16模型在训练集上达到了97%的准确率,而验证集的准确率为94%。在相同的训练周期下,训练集和验证集的准确率分别为91.1%和93.4%。这表明VGG16模型在对药用植物叶片进行分类时具有更好的性能和泛化能力。VGG16模型在药用植物叶片分类任务中展现出了优异的性能,为高效精准的植物分类提供了有力的解决方案。未来的研究可以进一步改进和扩展深度学习模型,以应对更广泛和复杂的植物分类挑战。 Traditional plant leaf classification methods often fail to meet the requirements of accuracy and efficiency.This study introduces the VGG16 model as an improved solution,aiming to improve the accuracy and automation of medicinal plant leaf classification.,and evaluates the benchmark CNN(Convolutional Neural Networks)model on the dataset and compare the effectiveness with the VGG16 model and the benchmark CNN model.The VGG16 model achieved an accuracy of 97%on the training set,while the accuracy of the validation set was 94%.Under the same training cycle,the accuracy of the training and validation sets is 91.1%and 93.4%,respectively.This indicates that the VGG16 model has better performance and generalization ability in classifying medicinal plant leaves.The VGG16 model exhibits excellent performance in the task of medicinal plant leaf classification,providing a powerful solution for efficient and accurate plant classification.Future research can further improve and expand deep learning models to address broader and complex plant classification challenges.
作者 刘艺 孙延斌 翟凤国 梁新 LIU Yi;SUN Yan-bin;ZHAI Feng-guo;LIANG Xin(Mudanjiang Medical College,Mudanjiang,Heilongjiang 157011,China;Affiliated Hongqi Hospital,Mudanjiang Medical College,Mudanjiang,Heilongjiang 157011,China)
出处 《新一代信息技术》 2023年第13期6-11,共6页 New Generation of Information Technology
基金 2021年度黑龙江省省属高校基本业务费科研项目(No.2021-KYYWF-0486)
关键词 深度学习 CNN模型 VGG16模型 植物分类 改进 deep learning CNN model VGG16 model plant classification improvement
  • 相关文献

参考文献3

二级参考文献42

  • 1李岚涛,张萌,任涛,李小坤,丛日环,吴礼树,鲁剑巍.应用数字图像技术进行水稻氮素营养诊断[J].植物营养与肥料学报,2015,21(1):259-268. 被引量:58
  • 2王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:114
  • 3丁娇,梁栋,阎庆.基于D-LLE算法的多特征植物叶片图像识别方法[J/OL].[2013-12-11].http://www.cnki.net/kcms/detail/11.2127.TP.20130924.0943.013.html.
  • 4INGROUILLEM J, LAIRDS M. A quantitative approach to oak variability in some north London woodlands [ J ]. The London Naturalist, 1986, 65: 35-46.
  • 5SIXTAT. Image and video-based recognition of natural objects [ D]. Prague: Czech Technical University, 2011.
  • 6ROSSATTOD R, CASANOVAD, KOLBR M, et al. Fractal analysis of leaf-texture properties as a tool for taxonomic and identification purposes: a case study with species from Neotropical Melastomataceae (Mi-conieae tribe) [ J]. Plant Systematics and Evolution, 2011, 291 ( 1 ) : 103-116.
  • 7MALLAH C,COPE J, ORWELL J. Plant leaf classification using probabilistic integration of shape, texture and margin features [ J/ OL]. [ 2014-01-06 ]. http://www, actapress, com/Abstract, aspx? paperId = 455022.
  • 8PELEGS, NAOR J, HARTLEY R, et al. Multiple resolution texture analysis and classification [ J ]. Pattern Analysis and Machine Intelligence, 1986,6(4) :518-523.
  • 9曾勇军,石庆华,潘晓华,韩涛.施氮量对高产早稻氮素利用特征及产量形成的影响[J].作物学报,2008,34(8):1409-1416. 被引量:77
  • 10刘宏伟,吴斌,张红英,李芳,邵延华.水稻叶片几何模型及其可视化研究[J].计算机工程,2009,35(23):263-264. 被引量:9

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部