期刊文献+

集装箱病媒生物视觉探寻系统 被引量:1

Container Vector Visual Search System
下载PDF
导出
摘要 针对传统集装箱病媒生物检测局限于人工检测的问题,设计了一款基于机器视觉的集装箱病媒生物视觉探寻系统.系统通过可遥控智能车采集实时视频以及抓取病媒生物的活动,进而通过深度学习和隔帧检测的方法识别遥控车回传视频中的病媒生物.系统以YOLOv5模型为训练核心,采用模块化结构,实现了集装箱病媒生物的视觉检测.利用机器视觉提高了检测效率,为进一步利用机器人检测病媒生物奠定了基础. To tackle the problem that traditional container vector detection is limited to manual detection,this study designs a visual search system for container vectors based on machine vision.The system collects real-time video and captures the activity of vectors through a smart car under remote control.Then,it recognizes the vectors in the video returned by the car through deep learning and inter-frame detection.The system takes the YOLOv5 model as the training core and adopts a modular structure to realize the visual detection of container vectors.Machine vision helps improve detection efficiency and lays the foundation for the further use of robots to detect vectors.
作者 滕新栋 唐宇豪 马兴录 李晓旭 TENG Xin-Dong;TANG Yu-Hao;MA Xing-Lu;LI Xiao-Xu(Qingdao Customs District P.R.China,Qingdao 266426,China;School of Information Science and Technology,Qingdao University of Science and Technology,Qingdao 266061,China)
出处 《计算机系统应用》 2022年第10期116-121,共6页 Computer Systems & Applications
基金 国家重点研发计划(2018YFF0214903)
关键词 YOLOv5模型 机器视觉 病媒生物 视频传输 深度学习 YOLOv5 model machine vision vector video transmission deep learning
  • 相关文献

参考文献13

二级参考文献41

  • 1李辉,宋耀良,杨余旺.宽带混沌信号在汽车防撞雷达中的应用[J].现代雷达,2006,28(11):54-57. 被引量:3
  • 2KAILATH T.The divergence and Bhattacharyya distance measures in signal selection[J].IEEE Trans on Communication Technology,1967,15(1):52-60.
  • 3TSAI D M,LAI S C.Independent component analysis-based background subtraction for indoor surveillance[J].IEEE Trans on Image Processing,2009,18(1):158-167.
  • 4AVIDAN S.Ensemble tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(2):261-271.
  • 5WANG Yang.Real-time moving vehicle detection with cast shadow removal in video based on conditional random field[J].IEEE Trans on Circuits and Systems for Video Technology,2009,19(3):437-441.
  • 6STAUFFER C,GRIMSON W E L.Learning patterns of activity using real-time tracking[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
  • 7ZHANG J,CHEN C H.Moving objects detection and segmentation in dynamic video backgrounds[C] //Proc of IEEE Conference on Technologies for Homeland Security.2007:64-69.
  • 8ZENG H C,LAI S H.Adaptive foreground object extraction for real-time video surveillance with lighting variations[C] //Proc of IEEE International Conference on Acoustics,Speech,and Signal Processing.Honolulu,HI:Institute of Electrical and Electronics Engineers,2007:1201-1204.
  • 9SHIMADA A,ARITA D,TANIGUCHI R I.Dynamic control of adaptive mixture-of-Gaussians background model[C] //Proc of IEEE International Conference on Video and Signal Based Surveillance.Washington DC:IEEE Computer Society,2006:1-5.
  • 10LEE D S.Effective Gaussian mixture learning for video background subtraction[J].IEEE Tran on Pattern Analysis and Machine Intelligence,2005,27(5):827-832.

共引文献245

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部