期刊文献+

基于低光增强的夜间疲劳驾驶检测算法 被引量:2

Fatigue Driving Detection Algorithm at Night Based on Low-Light Enhancement
下载PDF
导出
摘要 司机疲劳驾车会影响车辆的正常行驶,严重时会威胁司机和乘客的生命安全,因此检测司机是否出现疲劳现象可以有效保障人们的出行安全.在现实生活中,一般在夜间光照强度较弱的情况下,司机出现疲劳驾驶的次数较多,但是现有的相关检测算法无法处理灯光问题,导致其在夜间检测时准确率较低.针对此问题,本文提出了基于低光增强的夜间疲劳驾驶检测算法.首先对人脸图像进行低光增强处理,从而提高图像的曝光度;然后使用人脸关键点检测网络获取图像的眼睛区域;之后使用卷积神经网络对眼睛区域进行睁、闭眼分类;最后统计单位时间内睁、闭眼数量的比值,以此判定司机是否处于疲劳状态.实验结果表明,在夜间环境中,本文提出的检测算法相对现有算法在检测成功率上提升了15.38%,取得了更好的效果. Driver’s fatigue will affect the normal driving of the vehicle,and in serious cases will threaten the life safety of driver and passengers.Therefore,detecting whether the driver is fatigue can effectively protect people’s travel safety.In real scenario,generally,when the night light intensity is weak,the driver has a lot of time of fatigue driving,but the existing related detection algorithms cannot deal with the lighting problem,resulting in a low accuracy rate at night fatigue driving detection.Aiming at such problem,this study proposed a night-light fatigue driving detection algorithm based on low-light enhancement.Firstly,the LIME algorithm was used to perform low-light enhancement processing on the face image to improve the exposure of the image.Secondly,the face keypoint detection network was used to obtain the eye area of the image.Thirdly,the convolutional neural network was used to classify the eye area with open and closed eyes.Finally,the ratio of the number of eyes opened and closed per unit time is counted to determine whether the driver is in a fatigue state.The experimental results show that in the night environment,the detection algorithm proposed in this study improves the detection success rate by 15.38%compared with the existing algorithms,and achieves better results.
作者 李晓星 朱明 LI Xiao-Xing;ZHU Ming(Department of Automation,University of Science and Technology of China,Hefei 230026,China)
出处 《计算机系统应用》 2020年第10期173-178,共6页 Computer Systems & Applications
关键词 疲劳检测 低光增强 人脸关键点检测 低曝光图像 CNN fatigue detection low-light enhancement facial feature point detection low-light image CNN
  • 相关文献

参考文献9

二级参考文献53

  • 1毛喆,初秀民,严新平,吴超仲.汽车驾驶员驾驶疲劳监测技术研究进展[J].中国安全科学学报,2005,15(3):108-112. 被引量:76
  • 2杨凡,赵建民,朱信忠.一种基于BP神经网络的车牌字符分类识别方法[J].计算机科学,2005,32(8):192-195. 被引量:21
  • 3李斌,王猛,汪林,李宏海.驾驶时间对营运驾驶员驾驶能力影响的试验研究[J].公路交通科技,2007,24(5):113-116. 被引量:13
  • 4SAROJ K L, CRAIG A. Physiological indicators of driver fatigue[ C ]. Road Safety Research, Policing and Educa- tion Conference,2000 ( 11 ) :489-494.
  • 5JI Q, ZHU Z, LAN P. Real-time nonintrusive monitoring and prediction of driver fatigue [ J ]. IEEE Transactions on Vehicular Technology ,2004,53 ( 4 ) : 1052-1068.
  • 6LAL S K,CRAIG A. A critical review of the psychophysi- ology of driver fatigue [ J ]. Biological psychology, 2001, 55(3) :173-194.
  • 7RADUNOVIC D P. Wavelets:From math to practice [ M ]. Springer, 2009.
  • 8WU T,YAN G ZH,YANG B H,et al. EEG feature extrac- tion based on wavelet packet decomposition for brain com- puter interface[ J ]. Measurement ,2008,41 ( 6 ) :618-625. Y.
  • 9ANG G, LIN Y, BHA3TACHARYA P. A driver fatigue rec- ognition model using fusion of multiple features [ C ]. Pro- ceedings of IEEE International Conference on System, Man and Cybernetics,Waikoloa, HI, United States ,2005 (2) : 1777- 1784.
  • 10RAMOSER H, MULI3~R-GERKING J, PFURTSCHELIA~R (,. Optimal spatial filtering of single trial EEG during inkag- ined hand movement [ J ]. IEEE Transactions on Rehabilita- tion Engineering,2000,8(4) :441-446.

共引文献135

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部