期刊文献+

Asymptotic Normality for Wavelet Estimators in Heteroscedastic Semiparametric Model with Random Errors

原文传递
导出
摘要 For the heteroscedastic regression model Yi = xiβ + g(ti) + σiei, 1 ≤ i ≤ n, where σi2= f(ui), the design points(xi, ti, ui) are known and nonrandom, g(·) and f(·) are de?ned on the closed interval [0, 1]. When f(·) is known, we investigate the asymptotic normality for wavelet estimators of β and g(·) under {ei, 1 ≤ i ≤ n} is a sequence of identically distributed α-mixing errors;when f(·) is unknown, the asymptotic normality for wavelet estimators of β, g(·) and f(·) are established under independent errors. A simulation study is provided to illustrate the feasibility of the theoretical result that the authors derived.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2020年第4期1212-1243,共32页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos.11271189,11461057 Science Foundation of Guangxi Education Department under Grant No.2019KY0646 2019 Youth Teacher Research,the Development Fund Project of Guangxi University of Finance and Economics under Grant No.2019QNB07 the Discipline Project of School of Information and Statistics of Guangxi University of Finance and Economics under Grant No.2019XTZZ07
  • 相关文献

参考文献5

二级参考文献67

  • 1王启华.截尾样本下回归函数加权核估计的一些收敛性质[J].应用数学学报,1996,19(3):338-350. 被引量:6
  • 2杨善朝.混合序列矩不等式和非参数估计[J].数学学报(中文版),1997,40(2):271-279. 被引量:40
  • 3Shah Chao YANG.Maximal Moment Inequality for Partial Sums of Strong Mixing Sequences and Application[J].Acta Mathematica Sinica,English Series,2007,23(6):1013-1024. 被引量:13
  • 4R.F. Engle, W.J. Granger, J. Rice, and A. Weiss, Semiparametric estimates of the relation between weather and electricity sales. J. Amer. Statist. Assoc., 1986, 80: 310-319.
  • 5N. Heckman, Spline smoothing in a partly linear model, J. Roy. Statist. Soc. Set. B, 1986, 48:244-248.
  • 6J. Rice, Convergence rates for partially splined models, Statist. Probab. Lett., 1986, 4: 203-208.
  • 7H. Chen, Convergence rates for parametric components in a partly linear model, Ann. Statist.,1988, 16: 136-146.
  • 8P. Speckman, Kernel smoothing in partial linear models, J. Roy. Statist. Soc. Ser. B, 1988, 50:413-436.
  • 9R. Eubank, and P. Speckman, Trigonometric series regression estimators with an application topartially linear models, J. Multivariate Anal., 1990, 32: 70-83.
  • 10J.T. Gao, and L.C. Zhao, Adaptive estimation in partly linear regression models. Science in China,Ser. A, 1993, 1: 14-27.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部