期刊文献+

Several Properties of a Nonstandard Renewal Counting Process and Their Applications

原文传递
导出
摘要 This paper proposes a nonstandard renewal counting process based on web Markov skeleton process,called web renewal process,which allows applications in the field of natural science and social science.Parallel with the standard renewal counting process,some properties of the web renewal process and the corresponding web renewal reward processes,are investigated.Several limit properties,including the tail of the exponential moments of the web renewal process,and the results of precise large deviations and moderate deviations for the web renewal reward processes are derived.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2020年第1期122-136,共15页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos.11401556and 11471304.
  • 相关文献

参考文献3

二级参考文献44

  • 1Fu Qing GAO.Moderate Deviations for Random Sums of Heavy-Tailed Random Variables[J].Acta Mathematica Sinica,English Series,2007,23(8):1527-1536. 被引量:5
  • 2Linnik, Yu. V.: Limit theorems allowing large deviations for the sums of independent variables Ⅰ, Ⅱ. Theory Probab. Appl., 6, 145-161,377-391 (1961).
  • 3Heyde, C. C.: A contribution to the theory of large deviations for sums of independent random variables. Z. Wahr., 7, 303-308 (1967).
  • 4Heyde, C. C.: On large deviation problems for sums of random variables which are not attracted to the normal law. Ann. Math. Statist., 38, 1575-1578 (1967).
  • 5Heyde, C. C.: On large deviation probabilities in the case of attraction to a nonnormal stable law. Sankyd., 30, 253-258 (1968).
  • 6Nagaev, A. V.: Integral limit theorems for large deviations when Cramer's condition is not fulfilled I, II. Theory Probab. Appl., 14, 51-64, 193-208 (1969).
  • 7Nagaev, A. V.: Limit theorems for large deviations when Cramer's conditions are violated. Izv. Akad. Nauk UzSSR Set. Fiz-Mat. Nauk., 7, 17-22 (1969).
  • 8Nagaev, S. V.: Large deviations for sums of independent random variables. In: Transactions of the Sixth Prague Conference on Information Theory, Random Processes and Statistical Decision Functions, 657-674 Academic, Prague, 1973.
  • 9Nagaev, S. V.: Large Deviations of sums of independent random variables. Ann. Probab., 7, 745-789 (1979).
  • 10Cline, D. B. H., Hsing, T.: Large deviation probabilities for sums of random variables with heavy or subexponential tails, Preprint, 1998, Texas A&M University.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部