期刊文献+

非粘性Boussinesq方程的爆破准则

Blow-up Criterion for the Inviscid Boussinesq Equations
下载PDF
导出
摘要 为了改进非粘性Boussinesq方程在Besov-Morrey空间上的爆破准则,利用粒子轨道映射和Gronwall不等式,建立了非粘性Boussinesq方程在Besov-Morrey空间上新的爆破准则.研究表明:新的爆破准则仅与涡度有关,与温度无关. In order to improve the blow-up criterion of the inviscid Boussinesq equations in Besov-Morrey spaces,a new blow-up criterion for inviscid Boussinesq equations in Besov-Morrey spaces is established by using particle orbit mapping and Gronwall inequality.The results show that the new blow-up criterion is only related to vorticity and not to temperature.
作者 谢鸣凤 XIE Mingfeng(Hongshan College,Nanjing University of Finance and Economics,Nanjing 210003,China)
出处 《西安文理学院学报(自然科学版)》 2024年第2期25-27,55,共4页 Journal of Xi’an University(Natural Science Edition)
基金 江苏省高等学校自然科学研究项目(19KJD100001)
关键词 非粘性Boussinesq方程 Besov-Morrey空间 爆破准则 涡度 inviscid Boussinesq equations Besov-Morrey spaces Blow-up criterion vorticity
  • 相关文献

参考文献3

二级参考文献8

  • 1KOZOHO H,YAMAZAKI M. Semilinear heat equations and the Navier-Stokes equations with distributions in new funtion spaces as initial data[ EB/OLI, \textit { Comm. PDEt, {\bft 19} }( 1994)959 -1014.
  • 2TANG L. A remark on the well-posedness of the Euler equation in the Besov-Morrey space,preprint[ EB/OL]. \textit { ht- tp ://www. math. pku. edu. cn:8000/var/preprint/572, pdft.
  • 3XU J,TAN Y F. On the well-posedness of the quasi-geostrophic equations in the Besov-Morrey spaces [ J 1- Nonlinear Anal. TMA,2013,92:60 - 71.
  • 4TANG L. A remark on the well-posedness of the Euler equation in the Besov-Morrey space,preprint[ EB/OL]. \textit t ht- tp ://www. math. pku. edu. cn :8000/var/preprint/572. pdf/.
  • 5LIU X, WANG M, ZHANG Z. Local well-posedness and blow-up criterion of the boussinesq equations in critical Besov spaces[EB/OL~. \textit{ J. Math. Fluid Mech. { t \bf{ 12} t (2010)280 -292.
  • 6MAZZUCATO A. Besov-Morrey spaces:function spaces theory and applications to non-linear PDE [ EB/OL ]. \ textit {Trans. AMS}, t \bft 355} } (2002) 1297 - 1364.
  • 7郭柏灵.SPECTRAL METHOD FOR SOLVING TWODIMENSIONAL NEWTON-BOUSSINESQ EQUATIONS[J].Acta Mathematicae Applicatae Sinica,1989,5(3):208-218. 被引量:13
  • 8谢鸣凤.Boussinesq方程的适定性[J].西安文理学院学报(自然科学版),2015,18(3):9-14. 被引量:3

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部