期刊文献+

Polymer-free electrospun separator film comprising silica nanofibers and alumina nanoparticles for Li-ion full cell 被引量:1

Polymer-free electrospun separator film comprising silica nanofibers and alumina nanoparticles for Li-ion full cell
下载PDF
导出
摘要 A separator film for high-performance Li-ion batteries was prepared by electrospinning. The film had a hybrid morphology of silica nanofibers(SNFs) and alumina nanoparticles(ANPs), with a smooth surface, polymer-free composition, high porosity(79%), high electrolyte uptake(876%), and excellent thermal stability. Contact angle measurements demonstrated the better immersion capability of the SNF-ANP separator film for commercial liquid electrolytes than a commercial CELGARD 2500 separator film. Moreover,compared to the commercial CELGARD 2500 separator, the ionic conductivity of the SNF-ANP separator film was nearly three times higher, the bulk resistance was lower at elevated temperature(120 ℃), the interfacial resistance with lithium metal was lower, and the electrochemical window was wider. Full cells were fabricated to determine the cell performance at room temperature. The specific capacity of the full cell with the SNF-ANP separator film was 165 mAh g-1;the cell was stable for 100 charge/discharge cycles and exhibited a capacity retention of 99.9%. Notably, the electrospun SNF-ANP separator film can be safely used in Li-ion or Li-S rechargeable batteries. A separator film for high-performance Li-ion batteries was prepared by electrospinning. The film had a hybrid morphology of silica nanofibers(SNFs) and alumina nanoparticles(ANPs), with a smooth surface, polymer-free composition, high porosity(79%), high electrolyte uptake(876%), and excellent thermal stability. Contact angle measurements demonstrated the better immersion capability of the SNF-ANP separator film for commercial liquid electrolytes than a commercial CELGARD 2500 separator film. Moreover,compared to the commercial CELGARD 2500 separator, the ionic conductivity of the SNF-ANP separator film was nearly three times higher, the bulk resistance was lower at elevated temperature(120 ℃), the interfacial resistance with lithium metal was lower, and the electrochemical window was wider. Full cells were fabricated to determine the cell performance at room temperature. The specific capacity of the full cell with the SNF-ANP separator film was 165 mAh g-1; the cell was stable for 100 charge/discharge cycles and exhibited a capacity retention of 99.9%. Notably, the electrospun SNF-ANP separator film can be safely used in Li-ion or Li-S rechargeable batteries.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期217-226,共10页 能源化学(英文版)
基金 financial support for this work from the National Key R&D Program of China (2016YFB0100100) the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA17000000) R&D Projects in Key Areas of Guangdong Province of the Guangdong Provincial Department of Science and Technology Agency (2019B090908001).
关键词 ELECTROSPUN NANOFIBER Hybrid materials SEPARATOR FILM SILICA NANOFIBER LI-ION batteries Electrospun nanofiber Hybrid materials Separator film Silica nanofiber Li-ion batteries
  • 相关文献

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部