期刊文献+

Ultra-lightweight Ti3C2Tx MXene modified separator for Li–S batteries:Thickness regulation enabled polysulfide inhibition and lithium ion transportation 被引量:12

Ultra-lightweight Ti3C2Tx MXene modified separator for Li–S batteries:Thickness regulation enabled polysulfide inhibition and lithium ion transportation
下载PDF
导出
摘要 The practical application of lithium–sulfur(Li–S)batteries is limited by the easy dissolution of polysulfides in the electrolyte,resulting in the lithium polysulfide(LPS)shuttle effect.Several two-dimensional(2D)materials with abundant active binding sites and high surface-to-volume ratios have been developed to prepare functional separators that suppress the diffusion of polysulfides.However,the influence of modified layer thickness on Li+transport has not been considered.Herein,we synthesized individual and multilayered 2D Ti3C2Tx MXene nanosheets and used them to fabricate a series of Ti3C2Tx-PP modified separators.The separators had mass loadings ranging from 0.16 to 0.016 mg cm-2,which is the lowest value reported for 2D materials to the best of our knowledge.The corresponding reductions in thickness ranged from 1.2μm to 100 nm.LPS shuttling was effectively suppressed,even at the lowest mass loading of 0.016 mg cm-2.Suppression was due to the strong interaction between LPS intermediates and Ti atoms and hydroxyl functional groups on the separator surface.The lithium-ion diffusion coefficient increased with the reduction of Ti3C2Tx layers on the separator.Superior cycling stability and rate performance were attained when the separator with a Ti3C2Tx-PP mass loading of 0.016 mg cm-2 was incorporated into a Li–S battery.Carbon nanotubes(CNTs)were introduced into the separators to further improve the electrical and Li+ionic conductivity in the cross-plane direction of the 2D Ti3C2Txlayers.With the ultralightweight Ti3C2Tx/CNTs modified PP separator,the cell maintained a capacity of 640 m Ah g-1after 200cycles at 1C with a capacity decay of only 0.079%per cycle. The practical application of lithium–sulfur(Li–S)batteries is limited by the easy dissolution of polysulfides in the electrolyte,resulting in the lithium polysulfide(LPS)shuttle effect.Several two-dimensional(2D)materials with abundant active binding sites and high surface-to-volume ratios have been developed to prepare functional separators that suppress the diffusion of polysulfides.However,the influence of modified layer thickness on Li+transport has not been considered.Herein,we synthesized individual and multilayered 2D Ti3C2Tx MXene nanosheets and used them to fabricate a series of Ti3C2Tx-PP modified separators.The separators had mass loadings ranging from 0.16 to 0.016 mg cm-2,which is the lowest value reported for 2D materials to the best of our knowledge.The corresponding reductions in thickness ranged from 1.2μm to 100 nm.LPS shuttling was effectively suppressed,even at the lowest mass loading of 0.016 mg cm-2.Suppression was due to the strong interaction between LPS intermediates and Ti atoms and hydroxyl functional groups on the separator surface.The lithium-ion diffusion coefficient increased with the reduction of Ti3C2Tx layers on the separator.Superior cycling stability and rate performance were attained when the separator with a Ti3C2Tx-PP mass loading of 0.016 mg cm-2 was incorporated into a Li–S battery.Carbon nanotubes(CNTs)were introduced into the separators to further improve the electrical and Li+ionic conductivity in the cross-plane direction of the 2D Ti3C2Txlayers.With the ultralightweight Ti3C2Tx/CNTs modified PP separator,the cell maintained a capacity of 640 m Ah g-1after 200cycles at 1C with a capacity decay of only 0.079%per cycle.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期116-125,共10页 能源化学(英文版)
基金 financially supported by the National Natural Science Foundation of China(21706292) support from the Hunan Provincial Science and Technology Plan Project,China(No.2017TP1001).
关键词 Lithium SULFUR BATTERIES SEPARATOR MXene Thicknesses 2D materials Lithium sulfur batteries Separator MXene Thicknesses 2D materials
  • 相关文献

同被引文献74

引证文献12

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部