期刊文献+

可液化砂土地铁列车振动作用下沉降特性分析 被引量:4

Liquifiable sandy settlement characteristics analysis under metro train vibration load
下载PDF
导出
摘要 地层的不均匀以及一些特殊地层的存在,对列车振动荷载作用下的长期差异沉降具有较为显著的影响,直接影响到地铁列车营运期的长期安全问题。以佛山地铁2号线为例,通过数值模拟的方法对加固前与加固后可液化砂土层中的结构受力与地层沉降进行了具体分析,研究结果表明列车振动荷载对结构和地层整体影响较小,产生的位移较小。在列车长期循环振动荷载作用下,隧道会产生长期的沉降,沉降量初期发展较快、后期发展缓慢。对可液化地层进行注浆加固可以显著减少隧道沉降量。 Stratigraphic inhomogeneity and special strata have the significant impact on long-term differential settlement under the train vibration loads,which even directly affect long-term safety in the process of train operation.Considering the Foshan Metro Line 2 as an example,the structure stress and the stratum settlement are analyzed in detail through numerical simulation methods before and after strengthening.The study results indicate that the metro train vibration load has less influence on structure and the overall stratum.The tunnel has a long-term settlement under the long-term train vibration load circularly.The settlement value develops rapidly in early stages but turns slowly in later stages,which is reduced significantly after the grouting reinforcement of liquefiable stratum.
作者 周军 卢岱岳 Zhou Jun;Lu Daiyue(PowerChina Chengdu Engineering Co.,Ltd.,Chengdu 610072,China;Southwest Jiaotong University,Chengdu 610031,China)
出处 《土木工程学报》 EI CSCD 北大核心 2020年第S01期226-232,共7页 China Civil Engineering Journal
关键词 列车振动 可液化砂土 沉降特性 train vibration liquefiable sandy settlement characteristics
  • 相关文献

参考文献3

二级参考文献25

  • 1刘维宁,张昀青.轨道结构在移动荷载作用下的周期解析解[J].工程力学,2004,21(5):100-102. 被引量:45
  • 2刘晶波,李彬,谷音.地铁盾构隧道地震反应分析[J].清华大学学报(自然科学版),2005,45(6):757-760. 被引量:70
  • 3Hamada M, Isoyama R, Wakamatsu K. Liquefaction induced ground displacement and its related damage to lifeline facilities[J]. Soils and Foundations, 1996, 36 (1): 81-97.
  • 4Smith I M. A overview of numerical procedures used in VELACS project[A]. Arulanandan K, Scott R F. Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems[C]. Rotterdam: Balkema A A, 1994.
  • 5Hushmand B, Scott R F, Crouse C B. Centrifuge liquefaction tests in a laminar box[J]. Geotechnique, 1988, 38: 253-262.
  • 6Hashash Y M A, Hook J J, Schmidt B, Yao J. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247-293.
  • 7Ling H I, Mohri Y, Kawabata T, Liu H, Burke C, Sun L. Centrifugal modeling of seismic behavior of large-diameter pipe in liquefiable soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineering, 2003, 129(12): 1 092-1 101.
  • 8Chan A H C. User manual for Diana Swandyne-Ⅱ[R]. Glasgow: University of Glasgow, 1989.
  • 9Katona M G, Zienkiewicz O C. A unified set of single step algorithms Part 3: The Beta-m method, a generalization of the newmark scheme[J]. International Journal for Numerical Methods in Engineering, 1985, 21: 1 345-1 359.
  • 10Zienkiewicz O C, Chan A H C, Pastor M, Schrefler B A, Shiomi T. Computational Geomechanics with Special Reference to Earthquake Engineering[M]. New York: John Wiley & Sons, 1998.

共引文献71

同被引文献36

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部