期刊文献+

基于倾向得分的伪权数构造与混合样本推断 被引量:4

Propensity Score-based Pseudo Weight Construction and Mixed Sample Inference
下载PDF
导出
摘要 随着网络调查与大数据的发展,非概率样本受到越来越多的关注和重视,然而非概率样本存在入样概率和权数未知的问题,为了充分利用信息,如何将非概率样本和概率样本结合,利用混合样本推断总体成为一个热点问题。基于此,文章提出将概率样本与非概率样本混合,从同时计算权数和分别计算权数两条思路出发,结合倾向得分来构造非概率样本的伪权数,并利用混合样本来推断总体。模拟与实证研究表明:提出的两种混合样本推断方法所得的总体均值估计的绝对偏差、方差与均方误差都比仅基于概率样本的总体均值估计小,并且相对于分别计算权数估计总体均值的方法,同时计算权数估计总体均值的方法效果更好。 With the development of web survey and big data,the non-probability samples have attracted more and more attention.However,the unknown sampling probability and weights exist in non-probability samples.In order to make full use of information,how to combine non-probability samples with probability samples to infer the population by mixed samples has become a hot topic.In view of this,the paper proposes that probability samples and non-probability samples are mixed to construct the pseudo weights of non-probability samples based on propensity score and infer the population by mixed samples from two perspectives of calculating weights at the same time and calculating weights respectively.The simulation and empirical studies show that the absolute deviation,variance and mean square error of the population mean estimation obtained by the proposed two mixed sample inference methods are smaller than those of the population mean estimation only based on the probability samples.Moreover,the population mean estimation method of calculating weights at the same time performs better than that of calculating weights respectively.
作者 刘展 潘莹丽 涂朝凤 张梦 Liu Zhan;Pan Yingli;Tu Chaofeng;Zhang Meng(School of Mathematics and Statistics,Hubei Key Laboratory of Applied Mathematics,Hubei University,Wuhan 430062,China)
出处 《统计与决策》 CSSCI 北大核心 2021年第2期20-24,共5页 Statistics & Decision
关键词 倾向得分匹配法 伪权数 混合样本 概率样本 非概率样本 propensity score matching method pseudo weights mixed samples probability sample non-probability sample
  • 相关文献

参考文献3

二级参考文献15

  • 1Svensson J. Web panel surveys--can they be designed and used in a scientifically sound way? [ C ]. 59th World Statistics Congress, 2013.
  • 2Rivers D. Sample matching--representative sampling from internet panels[ J]. Polimetrix White Paper Series, 2006.
  • 3Vavreck L, Rivers D. The 2006 cooperative congressional election study [ J]. Journal of Elections, Public Opinion & Parties, 2008,18 (4) :35 -66.
  • 4Baker R, Brick J M, Bates N A, et al. Summary report of the AAPOR task force on nonprobability sampling [ J ]. Journal of Survey Statistics and Methodology, 2013, 1 (2) : 90 -143.
  • 5Terhanian G, Bremer J. A smarter way to select respondents for surveys? [ J]. International Journal of Market Research, 2012, 54 (6) :751 -780.
  • 6Kogan S M, Wejnert C, Chen Y F, et al. Respondent-driven sampling with hard-to-reach emerging adults: an introduction and case study with rural African Americans[ J]. Journal of Adolescent Research, 2011, 26(1 ): 30-60.
  • 7Qiu P Y, Yang Y, Ma X, et al. Respondent-driven sampling to recruit in-country migrant workers in China: a methodological assessment[ J]. Scandinavian Journal of Public Health, 2012, 40 : 92 - 101.
  • 8Elliott M N. Combining data from probability and non-probability samples using pseudo-weights [ J ]. Survey Practice, 2009, 2 (6) : 1 - 7.
  • 9Rosenbaum P R, Rubin D B. The centra| role of the propensity score in observational studies for causal effects [ J ]. Biometrika, 1983, 70(1): 41 -55.
  • 10Lee S. An evaluation of nonresponse and coverage errors in a web panel survey [ J ]. Social Science Computer Review, 2006, 24 (4) : 460 - 475.

共引文献44

同被引文献15

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部