摘要
南海可燃冰试开采的成功,迫切需求适用于商业化开发的可燃冰钻探技术与设备。为了解决可燃冰钻探作业中低浓度甲烷随钻探测技术难题,将激光光谱技术引入可燃冰钻探设备。简述可调谐半导体激光吸收光谱(TDLAS)、光腔衰荡光谱(CRDS)、光声光谱(PAS)三种激光光谱技术在低浓度甲烷气体检测方面的应用,对三种激光光谱技术的硬件结构、检测量程、灵敏度及技术方案成熟度等方面进行分析与对比。对比发现,可调谐半导体激光吸收光谱技术(TDLAS)在硬件结构搭建、甲烷气体浓度检测量程、光学镜片加工和安装精度要求及传感器抗干扰性能方面有较大技术优势,与钻探设备结合,易实现可燃冰钻采过程甲烷浓度实时在线检测。但可调谐半导体激光吸收光谱技术(TDLAS)在钻探设备上的应用仍需提升检测精度,克服钻探设备平台运转稳定性、激光设备小型化、抗杂波干扰能力等技术难题,为可燃冰钻探设备的研发方向提供参考。
The South China Sea have already made advances in trial production of combustible ice,and drilling technologies and rigs for commercial production of the combustible ice are urgent.So,laser spectroscopy technology is introduced to drilling rigs to measure methane with mid-low concentration while drilling.TDLAS,CRDS and PAS three laser spectroscopy technologies are applied to testing the methane with low concentra-tion.Hardware structure,detection concentration range of methane,sensitivity and maturity of technical project of three technologies are compared and analyzed.The comparison presents that tunable semiconductor laser ab-sorption spectroscopy(TDLAS) has technical advantages on the hardware structure building,detection concentration range of methane,optic lens processing and installation precision demand and anti-jamming performance of sensor.The concentration of methane during the drilling of the combustible ice may be detected on line in real time easily when TDLAS is combined with drilling rigs.However,the application of TDLAS on the drilling rigs still needs to improve the detection accuracy,and to overcome the technical difficulties of operation stability on the drilling rig platform,laser equipment miniaturization and anti-interference ability.It provides reference for research and development direction of the drilling rigs of the combustible ice.
作者
薛帅
Xue Shuai(Shaanxi Institute of Technology,Xi′an Shaanxi 710300)
出处
《中外能源》
CAS
2020年第1期56-60,共5页
Sino-Global Energy
基金
国家重点研发专项“深海关键技术与装备”——深海高精度痕量金属与溶解气体分析系统研制(编号:2016YFC0302300)
陕西国防工程职业技术学院校级科研项目(编号:Gfy19-37).
关键词
钻探设备
可燃冰
激光光谱技术
甲烷
drilling rigs
combustible ice
laser spectroscopy technology
methane