期刊文献+

压缩感知非规则采集技术在胜利油田GL-QN浅海地区的试验应用

Experimental application of compressed sensing irregular acquisition technology in the GL-QN shallow sea area of the Shengli Oilfield
下载PDF
导出
摘要 随着地震勘探目标复杂化,成像精度要求越来越高,高密度采集趋向于使用全方位、高炮道密度的采集方法,相应的经济成本也成倍上升。基于信号稀疏性提出的压缩感知理论在地震采集得以应用,利用非规则地震采集稀疏优化的特点,经济高效地获得地震采集数据,利用数据重构方法实现稠密数据体信号重建,提高地质构造目标体成像精度。将压缩感知非规则采集技术应用于胜利油田GL-QN地区,成功实施了浅海地区压缩感知非规则地震采集,首先简要介绍了海上压缩感知非规则采集设计及数据重构原理,详细阐述了海上压缩感知非规则观测系统设计参数优选的过程,然后优选出最佳的非规则采集方案并将其应用于海上生产,最终通过曲波域数据重构,得到了高密度更好的地震成像数据体,取得了良好的成像效果。 With the complexity of the seismic exploration target,the requirements of imaging precision increase.High-density acquisition tends to use the all-direction high shot channel density acquisition method,and the corresponding economic cost increases exponentially.The compressed sensing theory based on signal sparsity is applied in seismic acquisition,and the seismic acquisition data can be obtained economically and efficiently by utilizing the characteristics of irregular seismic acquisition sparsity optimization.The data reconstruction method can be used to reconstruct the signal of dense data volume and improve the imaging accuracy of the geological structure target volume.In this study,the technique of compressed-sensing irregular seismic acquisition was applied to the GL-QN area in the Shengli Oil Field,and the compressed-sensing irregular seismic acquisition was successfully implemented in the shallow sea area.This study briefly introduced the design of irregular data acquisition and data reconstruction based on sea compression perception,and expounded the process of optimizing design parameters of an irregular observation system based on sea compression perception in detail.Finally,the seismic imaging data volume with a higher density and better imaging effect was obtained through data reconstruction in the curved wave domain.
作者 谢金平 王贻朋 邸志欣 杨晨莹 XIE Jinping;WANG Yipeng;DI Zhixin;YAN Chenying(R&D Center,Sinopec Geophysical Corporation,Nanjing 211102,China;Sinopec Beidou Operation Service Center,Nanjing 211000,China)
出处 《石油物探》 CSCD 北大核心 2023年第S01期1-5,共5页 Geophysical Prospecting For Petroleum
基金 中石化石油工程技术服务有限公司科技项目(SG20-58K,SG20-62K)共同资助
关键词 压缩感知 非规则采集 观测系统设计 数据重建 成像效果 compressed sensing irregular acquisition observation system design data reconstruction imaging effect
  • 相关文献

参考文献5

二级参考文献47

  • 1Donoho D.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 2Candès E,Romberg J,Tao T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 3Candès E,Romberg J,Tao T.Stable signal recovery form incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207-1233.
  • 4Baraniuk R.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-120.
  • 5Baraniuk R.More is less:signal processing and the data deluge[J].Science,2011,331(2):717-719.
  • 6Herrmann F,Erlangga Y,Lin T.Compressive simultaneous full-waveform simulation[J].Geophysics,2009,74(4):35-40.
  • 7Lin T,Lebed E,Erlangga Y,et al.Interpolation solution of the Helmholtz equation with compressed sensing[J].Expanded Abstracts of 78th Annual Internat SEG Mtg,2008,2122-2126.
  • 8Neelamani R,Krohn C,Krebs J,et al.Efficient seismic forward modeling using simultaneous random sources and sparsity[J].Expanded Abstracts of 78th Annual Internat SEG Mtg,2008,2107-2111.
  • 9Ma J,Plonka G,Chauris H.A new sparse representation of seismic data using adaptive easy-path wavelet transform[J].IEEE Geoscience and Remote Sensing Letters,2010,7(3):540-544.
  • 10Herrmann F.Randomized sampling and sparsity:getting more information from fewer samples[J].Geophysics,2010,75(6):173-187.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部