摘要
本文研究了分形函数的一般(0,m)缺项插值问题.利用外推样条函数作为插值基函数的方法,得到了当压缩因子满足‖αk(r)‖∞≤1/((2N)m)(k=1,2,…,N;r=0,1,…,m)时的(0,m)分形缺项插值函数,并得到了对应条件下的收敛结果,用数值算例验证了外推样条函数作为分形缺项插值基函数是可行和有效的。
In this paper,the generalized Birkhoff(0,m)lacunary interpolation problem for the fractal function with proper perturbable parameters is investigated.An extrapolation algorithm is proposed to obtain an approximate spline polynomial solution,and convergence estimates are presented under the assumption of‖αk(r)‖∞≤1/((2 N)m)(k=1.2,…,N;r=0,1,…,m).The numerical results show that the interpolate perturbation method we provide works effectively.
作者
何尚琴
冯秀芳
HE Shang-qin;FENG Xiu-fang(School of Mathematics and Statistics,NingXia University,Yinchuan 750021,China;College of Mathematics and Information Science&Technology,Hebei Normal University of Science&Technology,Qinhuangddo 066004,China)
出处
《数学杂志》
2020年第2期199-209,共11页
Journal of Mathematics
基金
Supported by National Natural Science Foundation of China(11161036)
Natural Science Research Foundation of Ningxia Province,China(NZ17260)(NZ160117).
关键词
外推样条
分形函数
缺项插值
压缩因子
逼近阶
extrapolation spline
fractal function
lacunary interpolation
scaling factor
approximation order