摘要
本文研究了二进制变指数强型和弱型鞅空间的原子分解理论.利用原子分解的方法,给出次线性算子T是wHps(·)s到wLp(·)有界;Cesaro算子是Hp(·)到Lp(·)有界以及是Lp(·)到Lp(·)有界.上述结论推广了常指数情况下算子有界性的结果.
In this paper,we study the atomic decompositions of weak and strong dyadic martingale spaces with variable exponents.By atomic decompositions,we prove that sub linear operator T is bounded from wHp(·)s to wLp(·);Cesaro operator is bounded from Hp(·)to Lp(·)and from Lp(·)to Lp(·),which generalize the boundedness of operators in constant exponent case.
作者
张传洲
王久凤
张学英
ZHANG Chuan-zhou;WANG Jiu-feng;ZHANG Xue-ying(College of Science,Wuhan University of Science and Technology,Wuhan 430065,China)
出处
《数学杂志》
2020年第2期165-174,共10页
Journal of Mathematics
基金
Supported by National Natural Science Foundation of China(11871195).
关键词
原子分解
变指数
CESARO算子
atomic decompositions
variable exponents
Cesaro operator