期刊文献+

素的*-代数上的非线性混合Lie三重ξ-导子

THE MIXED LIE TRIPLE ξ-DERIVATION ON PRIME *-ALGEBRAS
下载PDF
导出
摘要 本文刻画了素*代数上的非线性混合Lie三重ξ-导子(ξ≠1)的结构.利用皮尔斯分解和混合Lie三重ξ-导子的性质,证明了一个有单位元和非平凡投影的素*-代数上的非线性的混合Lie三重ξ-导子(ξ≠1)一定是可加导子,且关于ξ是线性的. The aim of this paper is to characterize the nonlinear mixed Lie tripleξ-derivation(ξ=1)of a prime*-algebra.By using Peirce decomposition and the main proposition of mixed Lie tripleξ-derivation,it is proved that the nonlinear mixed Lie tripleξ-derivation(ξ=1)of a prime*-algebra with unit and non-trivial projection is an additive*-derivation and linear aboutξ.
作者 周游 杨柱俊 张建华 ZHOU You;YANG Zhu-jun;ZHANG Jian-hua(School of Mathematical Sciences,Qufu Normal University,Qufu 273165,China;School of Mathematics and Information Sciences,Shaanxi Normal University,Xi'an 710062,China)
出处 《数学杂志》 2020年第1期47-52,共6页 Journal of Mathematics
关键词 混合Lie三重ξ-导子 *-代数 导子 mixed Lie tripleξ-derivation *-algebra derivation
  • 相关文献

参考文献1

二级参考文献15

  • 1An, R. L., Hou, J. C.: A characterization of *-automorphism on B(H). Acta Math. Sin., Engl. Ser., 26, 287-294 (2010).
  • 2Bai, Z. F., Du, S. P.: Maps preserving products XY - YX* on von Neumann algebras. J. Math. Anal. Appl., 386, 103 109 (2012).
  • 3Brear, M., Foner, A.: On ring with involution equipped with some new product. Publ. Math. Debreeen, 57, 121 134 (2000).
  • 4Cui, J. L., Li, C. K.: Maps preserving product XY- YX* on factor von Neumann algebras. Linear algebra Appl., 431, 833-842 (2009).
  • 5Dai, L. Q., Lu, F. Y.: Nonlinear maps preserving Jordan *-products. J. Math. Anal. Appl., 409, 180 188 (2014).
  • 6Foner, M.: Prime rings with involution equipped with some new product. Southeast Asian Bulletin of Mathematics, 26, 27-31 (2002).
  • 7Halmos, P. R.: A Hilbert Space Problem Book, 2nd ed, Springer-Verlag, New York-Heideberg-Berlin, 1982.
  • 8Li, C. J., Lu, F. Y., Fang, X. C.: Nonlinear mappings preserving product XY + YX* on factor von Neumann algebras. Linear Algebra Appl., 438, 2339 2345 (2013).
  • 9Li, C. J., Lu, F. Y, Fang, X. C.: Nonlinear -Jordan *-derivations on von Neumann algebras. Linear Multilinear Algebra, 62, 466-473 (2014).
  • 10Molnr, L.: A condition for a subspace of B(H) to be an ideal. Linear Algebra Appl., 235, 229-234 (1996).

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部