摘要
本文给出了C^(N)上Fock空间上有限余维加权复合算子的完全刻画,该刻画与Fock空间上循环向量的刻画密切相关.主要结论表明,Fock空间上一个有界加权复合算子是有限余维的当且仅当其复合符号是1次可逆解析多项式,且当N=1时,其加权符号至多有有限个零点;当N≥2时,其加权符号没有零点.
In this paper,finite co-dimensional weighted composition operators on the Fock space over C^(N)are characterized completely,which is closely related to the characterization of cyclic vectors in the Fock space.The main result shows that a bounded weighted composition operator on the Fock space is finite co-dimensional if and only if the composite symbol is an invertible analytic polynomial with degree 1 and the weighted symbol has at most finite zeros when N=1 or is nonvanishing when N≥2.
作者
冯丽霞
赵连阔
FENG Lixia;ZHAO Liankuo(School of Mathematics and Computer Science,Shanxi Normal University,Taiyuan,Shanxi,030031,P.R.China)
出处
《数学进展》
CSCD
北大核心
2023年第5期905-914,共10页
Advances in Mathematics(China)
基金
Supported by NSFC(No.12271134)
Shanxi Scholarship Council of China(No.2020-089)
the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(No.20200019)
the Program of Graduate Bilingual Curriculum Construction in Shanxi Normal University(No.YJSSY201903)
关键词
FOCK空间
加权复合算子
余维
Fock space
weighted composition operator
co-dimension