期刊文献+

C^(N)上Fock空间上的有限余维加权复合算子

Finite Co-dimensional Weighted Composition Operators on the Fock Space over C^(N)
原文传递
导出
摘要 本文给出了C^(N)上Fock空间上有限余维加权复合算子的完全刻画,该刻画与Fock空间上循环向量的刻画密切相关.主要结论表明,Fock空间上一个有界加权复合算子是有限余维的当且仅当其复合符号是1次可逆解析多项式,且当N=1时,其加权符号至多有有限个零点;当N≥2时,其加权符号没有零点. In this paper,finite co-dimensional weighted composition operators on the Fock space over C^(N)are characterized completely,which is closely related to the characterization of cyclic vectors in the Fock space.The main result shows that a bounded weighted composition operator on the Fock space is finite co-dimensional if and only if the composite symbol is an invertible analytic polynomial with degree 1 and the weighted symbol has at most finite zeros when N=1 or is nonvanishing when N≥2.
作者 冯丽霞 赵连阔 FENG Lixia;ZHAO Liankuo(School of Mathematics and Computer Science,Shanxi Normal University,Taiyuan,Shanxi,030031,P.R.China)
出处 《数学进展》 CSCD 北大核心 2023年第5期905-914,共10页 Advances in Mathematics(China)
基金 Supported by NSFC(No.12271134) Shanxi Scholarship Council of China(No.2020-089) the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(No.20200019) the Program of Graduate Bilingual Curriculum Construction in Shanxi Normal University(No.YJSSY201903)
关键词 FOCK空间 加权复合算子 余维 Fock space weighted composition operator co-dimension
  • 相关文献

参考文献2

二级参考文献6

  • 1Garnett J.Bounded analytic functions[M].New York:Academic Press,1981.
  • 2Hednmalm H,Korenblum B,Zhu K.Theory of Bergman spaces[M].New York:Springer-Verlag,2000.
  • 3Izuchi K H.Cyclic vectors in the Fock space over the complex plane[J].Proceedings of the American Mathematical Society,2005,133:3627-3630.
  • 4Chen X M,Guo K Y.Analytic Hiblbert modules[M].London:CRC Press,2003.
  • 5Chen X M,Guo K Y,Hou S Z.Analytic Hilbert space over the complex plane[J].Journal of Mathematical Analysis and Applications,2002,268:684-700.
  • 6Lian Kuo ZHAO.A Class of Normal Weighted Composition Operators on the Fock Space of C^n[J].Acta Mathematica Sinica,English Series,2015,31(11):1789-1797. 被引量:3

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部