摘要
用[x]表示不超过x的最大整数.本文证明了对于充分大的正整数N以及任意的1<c<14/11,关于素变量P_(1),P_(2),P_(3),P_(4)的加性方程[p^(c)_(1)]+[p^(c)_(2)]+[p^(c)_(3)]+[p^(c)_(4)]=N有无穷多组解.
Let[x]denote the largest integer not exceeding x.It is proved that for 1<c<14/11,the additive equation[p^(c)_(1)]+[p^(c)_(2)]+[p^(c)_(3)]+[p^(c)_(4)]=N has infinitely many solutions in prime variables P_(1),P_(2),P_(3),P_(4)for sufficiently large positive integer N.
作者
徐森
XU Sen(School of Mathematics,Hefei University of Technology,Hefei,Anhui,230601,P.R.China)
出处
《数学进展》
CSCD
北大核心
2023年第5期857-866,共10页
Advances in Mathematics(China)
基金
Supported by Anhui Province Natural Science Foundation(No.1208085QA01)
关键词
加性方程
素数
指数和
additive equation
prime number
exponential sum