期刊文献+

补图是树的图的距离拉普拉斯特征值

Distance Laplacian Eigenvalues of Graphs Whose Complements Are Trees
原文传递
导出
摘要 一个连通图的距离拉普拉斯矩阵定义为顶点传输度对角矩阵与距离矩阵的差,距离拉普拉斯矩阵的特征值称为这个图的距离拉普拉斯特征值.距离拉普拉斯伸展度定义为图的最大与次小距离拉普拉斯特征值的差.本文确定了补图的最大距离拉普拉斯特征值取得最小值和最大值的树及补图的次小距离拉普拉斯特征值取得最小值和最大值的树,也确定了补图的次大距离拉普拉斯特征值取得最小值的树,还确定了补图的距离拉普拉斯伸展度取得最小值和最大值的树. The distance Laplacian eigenvalues of a connected graph are the eigenvalues of its distance Laplacian defined to be the difference between the diagonal matrix of vertex transmissions and the distance matrix.In this paper,we determine the unique trees for which the complements minimize(maximize,respectively)the largest distance Laplacian eigenvalue as well as the unique trees for which the complements minimize(maximize,respectively)the second smallest distance Laplacian eigenvalue.We also determine the unique trees for which the complements minimize the second largest distance Laplacian eigenvalue,and the unique trees for which the complements minimize(maximize,respectively)the distance Laplacian spread which is defined to be the difference between the largest and the second smallest distance Laplacian eigenvalues.
作者 林鸿莺 周波 LIN Hongying;ZHOU Bo(School of Mathematics,South China University of Technology,Guangzhou,Guangdong,510641,P.R.China;School of Mathematical Sciences,South China Normal University,,Guangzhou,Guangdong,510631,P.R.China)
出处 《数学进展》 CSCD 北大核心 2023年第5期819-830,共12页 Advances in Mathematics(China)
基金 Supported by NSFC(Nos.11801410,12071158)
关键词 距离拉普拉斯矩阵 距离拉普拉斯特征值 距离拉普拉斯伸展度 补图 distance Laplacian distance Laplacian eigenvalues distance Laplacian spread complement of a graph
  • 相关文献

参考文献2

二级参考文献11

  • 1Biggs,N.L.,Algebraic GraphTheory,Second Edition,Cambridge University Press,Cambridge,1993.
  • 2Bondy,J.A.,Murty,U.S.R.,Graph Theory with Applications,North Holland,New York,1976.
  • 3Hoffman,A.J.,Some recent results on spectral properties of graphs,In:H.Sachs,H.J.Voss,H.Walther,eds.,Beitrage ZurGraphentheorie,Int.Koll.Manebach,Leipzig,1968,75-80.
  • 4Doob,M.,An interrelation between line graphs,eigenvalues and matrix,Journal ofCombin.Theory Ser.B.,1973,15:40-50.
  • 5Cvetkovic,D.,Doob,M.,Sachs,H.,Spectra of Graphs,Theory and Application,AcademicPress,New York,1980.
  • 6Fiedler,M.,Algebraic connectivity of graphs,Czechoslovak Math.J.,1973,23:298-305.
  • 7Mohar,B.,The Laplacian Spectrum of Graphs,in GraphTheory,In:Y.Alvia,G.Chartrand,O.R.Ollermann,et al.eds.,Combinatorics andApplications,Wiley-Interscience,New York,1991,871-898.
  • 8Merris,R.,Laplacian matrices of graphs:A survey,Linear Algebra andApplications,1994,197/198:143-176.
  • 9Desai,M.,Rao,V.,A characterization of the smallest eigenvalue of a graph,Journal ofGraph Theory,1994,18(2):181-194.
  • 10YANG Ruo-song,WANG Li-gong.Distance Integral Complete Multipartite Graphs with s=5, 6[J].Chinese Quarterly Journal of Mathematics,2016,31(2):111-117. 被引量:2

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部