摘要
本文主要讨论了一类扰动的高斯权函数|z|^(α)exp(-z^(2)),z∈R,α>0生成的酉系综在区间(-t,t),t>0上的间隙概率问题.通过正交于该权函数的多项式满足的一组阶梯算子,得到了决定这个间隙概率的两个参量函数R_(n)(t)和r_(n)(t),其中r_(n)(t)满足一个离散PainlevéⅡ方程.基于另一个参量函数R_(n)(t)在双尺度下的渐近行为,以及该类正交多项式满足的二阶常微分方程得到一类双合流Heun方程.
In this paper,we focus on the gap probability of the unitary ensemble generated by the deformed Gaussian weight|z|^(α)exp(-z^(2)),z∈R,α>0 on the interval(-t,t),t>0.By using the ladder operator method of orthogonal polynomials associated with the weight,two quantities which determines the gap probability,are denoted by R_(n)(t)and r_(n)(t).We find r_(n)(t)satisfies a discrete PainlevéⅡequation by algebraic transformation.We also show that the second order differential equation of orthogonal polynomials approximately satisfies a bi-confluent Heun equation basing on the asymptotic behavior of the other quantity R_(n)(t).
作者
朱孟坤
王丹
陈玡仰
ZHU Mengkun;WANG Dan;CHEN YaYang(School of Mathematics and Statistics,Qilu University of Technology(Shandong Academy of Sciences),Jinan,Shandong,250353,P.R.China;School of Computer Science and Artificial Intelligence,Changzhou University,Changzhou,Jiangsu,213000,P.R.China;Department of Mathematics,Faculty of Science and Technology,University of Macao,Macao,999078,P.R.China)
出处
《数学进展》
CSCD
北大核心
2023年第3期453-465,共13页
Advances in Mathematics(China)
基金
朱孟坤受国家自然科学基金(No.12201333)
山东省自然科学基金(No.ZR2021QA034)
齐鲁工业大学(山东省科学院)科教产融合试点工程项目(No.2022PX086)资助
陈玡仰受广东省自然学科基金(No.2021A1515010361)
澳门科技发展基金(No.FDCT 0079/2020/A2)资助