期刊文献+

Osgood条件下G-Brown驱动的倒向随机微分方程 被引量:1

Backward Stochastic Differential Equations with Generators of Osgood Type Driven by G-Brownian Motion
下载PDF
导出
摘要 在生成元关于变量y满足Osgood条件、关于变量z满足Lipschitz条件下,建立了G-Brown运动驱动的倒向随机微分方程的解的存在唯一性定理. In this paper,the authors study the following backward stochastic differential equation driven by G-Brownian motion Y_t=ξ+∫_t^T f(s,Y_s,Z_s)ds+∫_t^T g(s,Y_s,Z_s)d_s-∫_t^T Z_sdB_s-(K_T-K_t),whose generators satisfy Osgood condition in y and Lipschitz continuous in z.An existence and uniqeness theorem for this kind of G-BSDE is established.
作者 张伟 江龙 ZHANG Wei;JIANG Long(Xuhai College,China University of Mining and Technology,Xuzhou 221008,Jiangsu,China;School of Mathematics,China University of Mining and Technology,Xuzhou 221116,Jiangsu,China)
出处 《数学年刊(A辑)》 CSCD 北大核心 2020年第3期309-324,共16页 Chinese Annals of Mathematics
基金 中央大学基础研究专项基金(No.2017XKZD11)的资助
关键词 G-BSDE G-Brown运动 Osgood条件 逐次逼近法 G-BSDE G-Brownian motion Osgood condition Successive approximation
  • 相关文献

参考文献6

二级参考文献67

  • 1ShigePeng.Filtration Consistent Nonlinear Expectations and Evaluations of Contingent Claims[J].Acta Mathematicae Applicatae Sinica,2004,20(2):191-214. 被引量:19
  • 2PENG Shige.NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS[J].Chinese Annals of Mathematics,Series B,2005,26(2):159-184. 被引量:31
  • 3钟六一,许明浩.倒向随机发展方程适应解的局部存在唯一性[J].数学杂志,1996,16(4):417-422. 被引量:6
  • 4Allais, M., La psychologie de l'home rationnel devant le risque: critique des postulats et axiomes de l'cole Amricaine, Econometrica, 21:4(1953), 503-546. Translated and reprinted in Allais and Hagen,1979.
  • 5Artzner, P., Delbaen, F., Eber, J. M. & Heath, D., Coherent measures of risk, Math. Finance, 9(1999),203-228.
  • 6Barrieu, P. & El Karoui, N., Optimal derivatives design under dynamic risk measures, Contemp. Math.,Amer. Math. Soc., 315(2004), 13-25.
  • 7Bensoussan, A., Stochastic Control by Functional Analysis Methods, North-Holland, 1982.
  • 8Briand, P., Coquet, F., Hu, Y., Memin, J. & Peng, S., A converse comparison theorem for BSDEs and related properties of g-expectations, Electron. Comm. Probab, 5(2000), 26.
  • 9Chen, Z., A property of backward stochastic differential equations, C. R. Acad. Sci. Paris, Ser. I Math., 326:4(1998), 483-488.
  • 10Chen, Z. & Epstein, L., Ambiguity, risk and asset returns in continuous time, Econometrica,70:4(2002), 1403-1443.

共引文献75

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部