期刊文献+

计及碳排放配限额的虚拟电厂多目标风险规避优化模型 被引量:3

Multi-objective Risk Avoidance Optimization Model for Virtual Power Plants Considering the Carbon Emission Allowance
原文传递
导出
摘要 将风电场、光伏发电、生物质发电、储能和燃气轮机及柔性负荷聚合为虚拟电厂(Virtual power plant,VPP).进一步,为刻画风光不确定性风险,分别利用条件风险价值方法(Conditional risk at value,CVaR)构造最小化运营风险目标函数及利用鲁棒随机优化理论转化含不确定性变量约束条件,并选取最大化运营收益和最小化碳排放总量,构建VPP多目标风险规避优化模型.最后,选取改进IEEE30节点系统进行算例分析,结果表明:1)所提风险规避模型能够兼顾效益、风险和碳排放多方诉求;特别是,当鲁棒系数Γ≤0.85,较小的不确定性会带来较大的风险,表明决策者风险态度会影响VPP调度方案;2)预测误差e较高时,相同的Γ增长幅度会带来更高的CVaR增长幅度,表明较低的预测精度会放大不确定性风险,意味着决策者需通过提升预测精度以降低VPP运营风险;3)META能凸显清洁能源环境友好特性,实现VPP整体的最优均衡运行.综上,所提模型能够为决策制定最优VPP调度策略提供决策支撑. The paper integrated wind power plant(WPP),photovoltaic power generation(PV),biomass power generation(BPG),energy storage system(ESS),conventional gas turbines(CGT)and flexible load into a virtual power plant(VPP).Then,in order to analyze uncertainties,the conditional risk at value(CVaR)is introduced to construct the objective of the minimum operation risk and the robust optimization theory is used to convert the constraint conditions into stochastic constraint conditions.Thirdly,the objective functions of the maximum operation revenue and the minimum carbon emission are chosen to construct the multi-objective risk aversion model for VPP operation.Finally,the improved IEEE 30 bus system is chosen for example analysis,the results show:1)The proposed risk aversion model can balance the benefits,risks and carbon emissions;in particular,when the robustness coefficientΓ<0.85,the smaller uncertainty will bring greater risks,indicating that the risk attitude of decision makers will influence VPP’s scheduling scheme.2)When the prediction error e is high,the same?growth rate ofΓwill bring a higher growth rate of CVaR,indicating that lower prediction accuracy will amplify the uncertainty risk,meaning that the decision maker needs to improve the predictive accuracy to reduce VPP operational risk;3)META can highlight the environmentally friendly characteristics of clean energy and achieve optimal optimal operation of VPP.Therefore,the proposed multi-objective and solution algorithm model can be used to provide reliable decision support for decision makers to develop optimal VPP operation plans.
作者 康凯 史振宇 鲍忠伟 张颖 姜玉山 章正暘 李立仪 KANG Kai;SHI Zhen-yu;BAO Zhong-wei;ZHANG Ying;JIANG Yu-shan;ZHANG Zheng-yang;LI Li-yi(State Grid Shandong Electric Power Company Yantai Power Supply Company,Yantai 264001,China;Shanghai Electric Power Co.,Ltd.,Shanghai 200010,China;Beijing Oriental Jinghai Electronic Technology Co.,Ltd.,Beijing 100000,China)
出处 《数学的实践与认识》 北大核心 2020年第3期302-315,共14页 Mathematics in Practice and Theory
基金 国家自然科学基金(71273090).
关键词 虚拟电厂 CVAR 不确定性 需求响应 virtual power plant CVaR uncertainty demand response
  • 相关文献

参考文献7

二级参考文献169

  • 1艾欣,刘晓.基于可信性理论的含风电场电力系统动态经济调度[J].中国电机工程学报,2011,31(S1):12-18. 被引量:55
  • 2娄素华,余欣梅,熊信艮,吴耀武.电力系统机组启停优化问题的改进DPSO算法[J].中国电机工程学报,2005,25(8):30-35. 被引量:35
  • 3Dielmann K,Velden A.Virtual power plants (VPP)-a new perspective for energy generation[C]//Proceedings of the 9th International Scientific and Practical Conference of Students,Post-graduates and Young Scientists.Minsk,Belarus:International Sakharov Environmental University,2003:18-20.
  • 4Setiawan E.Concept and controllability of virtual power plant[M].Germany:Kassel University Press,2007.
  • 5Pudjianto D,Ramsay C,Strbac G.Virtual power plant and system integration of distributed energy resources[J].IET Renewable Power Generation,2007,1(1):10-16.
  • 6Anderson P,Poulsen B,Decker M,et al.Evaluation of a generic virtual power plant framework using service oriented architecture[C]//2nd IEEE International Conference on Power and Energy.Baharu,Malaysia:IEEE,2008:1212-1217.
  • 7Asmus P.Microgrids, virtual power plants and our distributed energy future[J].The Electricity Journal,2010,23(10):72-82.
  • 8Kumagai J.Virtual power plants,real power[J].IEEE Spectrum,2012,49(3):13-14.
  • 9Nikonowica I,Milewski J.Virtual power plant general review:structure,application and optimization[J].Journal of Power Technologies,2012,92(3):135-149.
  • 10Carr S.Virtual power plants[J].International Journal of Scientific & Engineering Research,2011,2(8):139-142.

共引文献350

同被引文献97

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部