摘要
利用Marshall-Olkin提出构造分布的方法,以重尾分布F作为基础,提出了Marshall-Olkin扩展重尾分布G,根据常见重尾分布子族的定义及其等价关系,分析了F与G的相关性质,对于重尾分布族,G具有封闭性,尾等价性,同时在连续型分布情形下,讨论了F与G的密度函数之间及风险率函数之间的关系.最后,将Marshall-Olkin扩展重尾分布应用于实际数据中,并在拟合数据方面与原分布进行比较,表明扩展分布要优于原分布.
Marshall and Olkin proposed a new method to estabilish new families of distributions by adding a parameter to a distribution.In this paper,based on heavy-tailed distribution F,Marshall-Olkin extended heavy-tailed distribution G is introduced.Properties related to Marshall-Olkin extended heavy-tailed distribution are discussed according to the definitions and the equivalent conditions of common subclasses of heavy-tailed distribution.It is concluded that Marshall-Olkin extended heavy-tailed distribution G has the properties of closure and tail equivalence for classes of heavy-tailed distribution.At the same time,this paper investigates not only the relation of the density function of F and G but also the hazard rate function in the continuous distribution.Finally,a real data is used to compare the Marshall-Olkin extended heavy-tailed distribution with original distribution in term of model fitting.It is shown that extended distribution is better than original distribution.
作者
常帅
CHANG Shuai(Department of Mathematics,Taiyuan Normal University,Jinzhong 030619,China)
出处
《数学的实践与认识》
北大核心
2020年第2期229-234,共6页
Mathematics in Practice and Theory
基金
山西省回国留学人员科研资助项目(2017-104).