期刊文献+

较多约束规划的稳定性

Stability of Major Constraint Programming
原文传递
导出
摘要 文章研究较多约束规划问题的稳定性.在给出问题的较多约束集结构表示的基础上,研究当目标函数和约束函数关于自变量和扰动变量均为连续时,扰动较多约束规划的最优值关于扰动变量的连续性.得到扰动较多约束规划的最优解集的半连续性.在此基础上,讨论当目标函数和约束函数均为凸函数时,扰动较多约束规划的最优值和最优解集的连续性和半连续性. In this paper,the stability of a class of major constraint programming is studied.Based on the representation of major constraint set structure,the continuity of the optimal value and the semicontinuity of its optimal solution set with the perturbation variables for the perturbation major constraints programming are obtained when the objective and constraint functions are continuous with respect to the independent variables and perturbation variables.On this basis,the continuity of the optimal value and the semicontinuity of the optimal solution set for the perturbation major constraints programming are also discussed when the objective function and constraint functions are convex.
作者 周轩伟 ZHOU Xuanwei(Basic Courses School of Zhejiang Shuren University,Hangzhou,Zhejiang,310015, China)
出处 《浙江树人大学学报(自然科学版)》 2019年第4期39-44,63,共7页 Journal of Zhejiang Shuren University(Acta Scientiarum Naturalium)
关键词 非线性规划 较多约束规划 稳定性 半连续性 nonlinear programming major constraint programming stability semicontinuity
  • 相关文献

参考文献3

二级参考文献16

  • 1胡毓达,1987年
  • 2胡毓达,高校应用数学学报,1986年,1卷,1期
  • 3胡毓达,运筹学杂志,1986年,5卷,1期
  • 4Moder J J, Elmaghraby S E. Hand Book of Operations Research[M]. New York: van Nostrand Reinhold. Co., 1978.
  • 5Jimnez B, Novo V. First and second-order sufficient conditions for strict minimality in nonsmooth vector optimization[J]. J. Math. Anal. Appl., 2003, 284: 496-510.
  • 6Jimnez B, Novo V. Optimality conditions in differentiable vector optimization via second order tangent sets[J]. Appl. Math. Optim., 2004, 49: 23-144.
  • 7Khanh P Q, Tuan N D. Optimality conditions for nonsmooth multiobjective optimization using Hadamard directional derivatives[J]. J. Optim. Theory Appl., 2007, 133: 341-357.
  • 8Crespi G P, Ginchev I, Rocca M. First-order optimality conditions in set-valued optimization[J]. Math. Methods Oper. Res., 2006, 63: 87-106.
  • 9Burachik R S, Jeyakumar V. A dual condition for the convex subdifferential sum formula with appli- cations[J]. J. Convex Anal., 2005, 12:279-290.
  • 10Dinh N, Goberna M A, LSpez M A, Son T Q. New Farkas-type constraint qualifications in convex infinite programmming[J]. ESAIM Control Optim. Calc. Var., 2007, 13:580-597.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部