摘要
根据微积分的有关知识,利用坐标平移的方法,对极坐标系下的曲边扇形绕任意平面斜轴的旋转体体积公式进行分析,得到旋转轴不经过极点时旋转体体积的计算方法,并借助实例进行说明.
Based on the knowledge of calculus and the method of coordinate translation,the formula for the volume of the solid of revolution by revolving the curvilinear sector around the tilted axis in polar coordinate system is analyzed.A formula for calculating the volume of the solid of revolution is obtained when the tilted axis does not pass through the pole.An examples is provided to demonstrate the application of the formula.
作者
陈珍培
CHEN Zhenpei(Basic Courses School of Zhejiang Shuren University,Hangzhou,Zhejiang,310015,China)
出处
《浙江树人大学学报(自然科学版)》
2019年第3期45-47,53,共4页
Journal of Zhejiang Shuren University(Acta Scientiarum Naturalium)
关键词
曲边扇形
极坐标
旋转体
定积分
curvilinear sector
polar coordinate
solid of revolution
definite integrals