摘要
本文介绍了一个有效的处理高维变点问题的方法。我们先将数据矩阵使用主成分分析的方法投影到低维空间,然后再利用传统变点的方法来进行估计。在变点个数未知时,我们使用交叉核实的方法来估计变点个数。在数值模拟研究中,我们将新方法同一些已有的方法进行了比较,在估计的准确度和计算时间等方面都要优于其他方法。
In this paper,we propose an efficient method for detecting change-points in high-dimensional setting.We first utilize the principle component analysis to project the data matrix to a lower-dimensional space,and then estimate the location of change-points by conventional change-points detection method.When the number of change-points is unknown,we use the cross-validation to estimate the number.In the simulation studies,we compare the new method with some existing methods.Our method performs well in both aspects of estimation accuracy and computational time.
作者
李家琦
LI Jia-qi(School of Statistics and Data Science,LPMC and KLMDASR,Nankai University,Tianjin 300071,China)
出处
《数理统计与管理》
CSSCI
北大核心
2020年第2期251-262,共12页
Journal of Applied Statistics and Management
关键词
高维变点检测
主成分分析
交叉核实
high-dimensional change-point detection
principle component analysis
cross-validation