期刊文献+

Er(NO3)3掺杂对TC4微弧氧化涂层电化学行为的影响 被引量:5

Influence of Er(NO3)3 Doping on Electrochemical Behavior of TC4 MAO Coating
下载PDF
导出
摘要 针对TC4合金耐腐蚀性偏低的问题,利用微弧氧化技术在TC4表面制备陶瓷涂层,探究了电解液中Er(NO3)3掺杂量对TC4微弧氧化(MAO)涂层润湿性能和电化学行为的影响作用。结果表明:随着Er(NO3)3含量的增加,TC4涂层中金红石相TiO2衍射峰逐渐加强,锐钛矿相TiO2减弱。在电解液中引入适量Er(NO3)3有助于促进金红石相TiO2形成。Er(NO3)3含量变化对TC4钛合金微弧氧化涂层表面粗糙度的影响不大,粗糙度在6~12μm内。在电解液中引入Er(NO3)3后,TC4涂层的极化曲线会向正电位方向移动。增加Er(NO3)3含量,腐蚀电位增加。 In view of the poor corrosion resistance of TC4 alloy,the micro-arc oxidation technology was used to fabricate ceramic coating on the surface of TC4,then the relationship between Er(NO3)3 doping amount in micro-arc oxidation electrolyte and the wettability performance of TC4 micro-arc oxidation coating was investigated.The results show that as the content of Er(NO3)3 increases,the diffraction peak of rutile phase TiO2 in TC4 coating reinforces gradually,while that of anatase phase TiO2 weakens.The introduction of Er(NO3)3 into the electrolyte can promote the formation of rutile TiO2.The change of Er(NO3)3 content has little effect on the surface roughness of TC4 micro-arc oxidation coating,which is within the range of 6-12μm.After the introduction of Er(NO3)3 into the electrolyte,the polarization curve of the TC4 micro-arc oxidation coating moves into the direction of positive potential.With the increase of Er(NO3)3 content,the corrosion potential increases.
作者 张晶尧 李成海 杨涵崧 张云龙 王涛 李国晶 潘佳琦 ZHANG Jingyao;LI Chenghai;YANG Hansong;ZHANG Yunlong;WANG Tao;LI Guojing;PAN Jiaqi(Collage of Materials Science and Engineering,Jiamusi University,Jiamusi 154007,China)
出处 《热加工工艺》 北大核心 2020年第4期88-91,共4页 Hot Working Technology
基金 国家自然科学基金资助项目(51671096) 黑龙江省自然科学基金项目(E2015038) 黑龙江省教育厅科学研究项目(2016-KYYWF-0556,2017-KYYWF-0582) 佳木斯大学科学研究项目(Lz2013-014).
关键词 TC4钛合金 微弧氧化涂层 电化学分析 润湿行为 稀土硝酸盐 TC4 titanium alloy micro-arc oxidation(MAO)coating electrochemical analysis wetting behavior rare earth nitrate
  • 相关文献

参考文献7

二级参考文献41

  • 1陶海军,陶杰,王玲,王炜.纯钛及其合金表面纳米多孔TiO_2膜的制备研究[J].南京航空航天大学学报,2005,37(5):597-602. 被引量:14
  • 2邓姝皓,易丹青,林双平,周玲伶.钛的直流阳极氧化工艺研究[J].电镀与精饰,2006,28(5):15-20. 被引量:5
  • 3Boyer R R. An Overview on the use of Titanium in the Aerospace Industry[J]. Materials Science and Engineering A, 1996, 213:103--114.
  • 4Matsuura K, Kudoh M. Surface Modification of Titanium by a Diffusion Carbonitriding Method[J]. Acta Materialia, 2002, 50:2 693--2 700.
  • 5Kung S. High Temperature Coating for Titanium Aluminides using the Pack-cementation Technique[J]. Oxidation of Metals, 1990, 34(3,4):217--228.
  • 6Taniguchi S, Shitaba T, Takeuchi K. Protectiveness of a CVD-Al2O3 Film on TiAl Intermetallic Compound against High temperature Oxidation[J]. Materials Transactions, 1991, 32: 299--301.
  • 7Gong S, Xu H, Yu Q, et al. Oxidation Behaviour of TiAl/ TiAl-SiC Gradient Coatings on Gamma Titanium Aluminides [J]. Surface and Coatings Technology, 2000, 130: 128-- 132.
  • 8Niewolak L, Shemet V, Gil A, et al. Alumina-forming Coatings for Titanium and Titanium Aluminides[J]. Advance Engineering Materials, 2001,3(7): 496--500.
  • 9Benien H, Meryer M, Suchentrunk R D C. Magnetron Sputtering of Oxidation-resistant Chromiuum and ArN Films Monitored by Optical Emission Spectrometry[J]. Materials Science and Engineering, 1991, A139: 126- 131.
  • 10Leyens C, Peters M, Kaysser A W. Influence of Intermetallic Ti-Al Coating on the Creep Proerties of TIMET- AL 1100[J]. Scripta Materialia, 1996, 35(12):1 423-- 1 428.

共引文献56

同被引文献87

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部