期刊文献+

混合非参数回归的贝叶斯推断 被引量:1

Bayesian inference for mixture of nonparametric regression models
下载PDF
导出
摘要 针对混合非参数回归问题,给出了一种基于贝叶斯框架的推断方法.在该方法中对每一个非参数混合成分用一个随机过程的有限维分布族作为先验,同时分别构造混合比例、随机误差的方差和非参数混合成分的贝叶斯估计,并通过马尔科夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)法抽样来进行后验推断.数值模拟分别从样本量、回归曲线的相对位置和多分类情况3个角度进行.模拟结果表明,相较于全局期望最大化(global expectation maximalization)算法,混合非参数回归的贝叶斯推断方法能够有效利用先验信息来提高模型的拟合和预测能力.最后将混合非参数回归的贝叶斯推断方法应用于蚜虫与受感染烟草植物的实验,同时解决了数据的聚类与回归拟合问题,其有效性和适用性得证. For mixing nonparametric regression models,an inference method is proposed based on the Bayesian framework.In this method,a finite dimensional distribution family of the stochastic process is used as a prior distribution for each nonparametric component,and Bayesian estimators of mixture proportions,each random error’s variance,and nonparametric components are constructed respectively.A Markov chain Monte Carlo(MCMC)method is used for posterior inference.The numerical simulations are performed from the perspectives of sample size,relative position of the regression curve,and multiclassification.The results show that,compared with the generalised expectation maximisation(GEM)algorithm,the Bayesian inference method of mixing nonparametric regression can effectively use the prior information to improve the ability of fitting and prediction.Finally,the Bayesian inference method is applied to the experimental data from aphids and infected tobacco plants and solved clustering and regression problems.This also demonstrates the effectiveness and applicability of the method.
作者 李道扬 何幼桦 LI Daoyang;HE Youhua(College of Sciences,Shanghai University,Shanghai 200444,China)
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第5期856-865,共10页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(11971296)
关键词 混合回归 非参数回归 贝叶斯估计 有限维分布 MCMC抽样 mixture models nonparametric regression Bayesian estimation finite dimensional distribution Markov chain Monte Carlo(MCMC)sampling
  • 相关文献

同被引文献33

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部