期刊文献+

基于视频深度学习的小鼠恐惧情绪识别与分析方法研究

Research on Mouse Fear Recognition and Analysis Method Based on Video Deep Learning
下载PDF
导出
摘要 在小鼠情绪分析实验中,实验者通常采用机器学习的方法预测小鼠关键部位的位置变化来判定小鼠是否处于恐惧情绪行为。为了进一步提高小鼠恐惧情绪识别和分析的准确率,本文构建了一种高效的轻量化U-Net语义分割模型,提出了根据视频中帧画面之间小鼠轮廓区域的变化幅度来量化分析小鼠恐惧情绪行为的方法。经实验验证,本文方法与专家统计结果的皮尔森相关性系数达到86%以上,证明了本文方法对于小鼠恐惧情绪行为的分析具有较高的准确率,同时对其它小型模式动物行为分析也有一定的参考价值。 To determine whether the mouse is in fear emotion behavior studies,deep learning method is often used to obtain the displacements of key parts of mouse body from frames.In order to improve the accuracy of mouse fear emotion recognition,we established an efficient lightweight U-Net model for semantic segmentation to quantify mouse’s fear emotion behavior based on the variation of mouse contour from frames.With experimental validation,Pearson correlation coefficient between the results from the proposed method and the ground-truth by experts is up to 86%,so that the accuracy of our method is acceptable for mouse fear emotion analysis.In addition,this method offers potential applications for behavior analysis of other model animals.
作者 刘亚 刘可 黄庆安 柏涛 邱收 张娜 朱真 LIU Ya;LIU Ke;HUANG Qing-an;BAI Tao;QIU Shou;ZHANG Na;ZHU Zhen(School of Microelectronics,Southeast University,Nanjing,Jiangsu,210096;School of Electronic Science and Engineering,Southeast University,Nanjing,Jiangsu,210096;Center for Excellence in Brain Science and Intelligence Technology,Chinese Academy of Sciences,Shanghai 200031)
出处 《生命科学仪器》 2021年第4期37-44,共8页 Life Science Instruments
关键词 视频处理 语义分割 轻量化 情绪分析 video processing semantic segmentation lightweight U-net recognition of emotion
  • 相关文献

参考文献3

二级参考文献30

  • 1李刚,邱尚斌,林凌,曾锐利.基于背景差法和帧间差法的运动目标检测方法[J].仪器仪表学报,2006,27(8):961-964. 被引量:111
  • 2Simon Denman, Vinod Chandran, Sridha Sridharan. An adaptive optical flow technique for person tracking systems [ J ]. Pattern Recognition Let- ters ,2007,28(10) : 1232 - 1239.
  • 3Jayabalan E, Krishnan Dr A, Pugazendi R. Non rigid object tracking in aerial videos by combined snaked and optical flow technique [ J ]. Com- puter Graphics,Imaging and Visualisation,2007,21 (6) :388 -396.
  • 4Andres Bruhn, Jochim Weieker. Lucas-Kanade Meets Horn-Schunck: Combining Local and Global Optical Flow Methods [ J]. Intenational Journal of Computer Vision,2005,61 ( 3 ) :211 - 231.
  • 5Fernando W S P, Udawatta L, Pathirana P. Identification of moving ob- stacles with Pyramidal Lucas Kanade optical flow and K means cluste- ring[ C ]//ICIAFS 2007 Third International Conference on Information and Automation for Sustainability, December 4 - 6,2007 : 111 - 117.
  • 6Doucet A,Gordon N J,Krishnamurthy V.Particle filters for state estimation of jump Markov linear systems[J].Signal Processing,IEEE Transactions on,2001,49(3):613-624.
  • 7Gali C S S,Lon Cari C S.Spatio-temporal image segmentation using optical flow and clustering algorithm[C]//Image and Signal Processing and Analysis,2000.IWISPA 2000.Proceedings of the First International Workshop on.IEEE,2000:63-68.
  • 8Papenberg N,Bruhn A,Brox T,et al.Highly accurate optic flow computation with theoretically justified warping[J].International Journal of Computer Vision,2006,67(2):141-158.
  • 9De la Torre F,Black M J.Robust principal component analysis for computer vision[C]//Computer Vision,2001.ICCV 2001.Proceedings.Eighth IEEE International Conference on.IEEE,2001,1:362-369.
  • 10De La Torre F,Black M J.A framework for robust subspace learning[J].International Journal of Computer Vision,2003,54(1-3):117-142.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部