期刊文献+

一种基于分解和协同的高维多目标进化算法 被引量:8

Many-objective Evolutionary Algorithm Based on Decomposition and Coevolution
下载PDF
导出
摘要 现实中大量存在的高维多目标优化问题对以往高效的多目标进化算法提出了严峻的挑战.通过将分解策略和协同策略相结合提出一种高维多目标进化算法MaOEA/DCE.该算法利用混合水平正交实验方法在聚合系数空间产生一组均匀分布的权重向量以改善初始种群的分布性;其次,算法将差分进化算子和自适应SBX算子进行协同进化,以产生高质量的子代个体,并改善算法的收敛性.该算法与另外5种高性能的多目标进化算法在基准测试函数集DTLZ{1,2,4,5}上进行对比实验,利用改进的反转世代距离指标IGD+评估各算法的性能.实验结果表明,Ma OEA/DCE算法与其他对比算法相比,在总体上具有较为显著的收敛性和分布性优势. In real-world,there exist lots of many-objective optimization problems(MaOPs),which severely challenge well-known multi-objective evolutioanry algorithms(MOEAs).A many-obective evolutioanry algorithm combining decomposition and coevolution(MaOEA/DCE)is presented in this paper.MaOEA/DCE adopts mix-level orthogonal experimental design to produce a set of weight vectors evenly distributed in weight coefficient space,so as to improve the diversity of initial population.In addition,the MaOEA/DCE integrates differential evolution(DE)with the adaptive SBX operator to generate high-quality offspring for enhancing the convergence of evolutionary population.Some comparative experiments are conducted among MaOEA/DCE and other five representative MOEAs to examine their IGD+performance on four MaOPs of DTLZ{1,2,4,5}.The experimental results show that the proposed MaOEA/DCE has overall performance advantage over the other peering MOEAs in terms of convergence,diversity,and robustness.
作者 谢承旺 余伟伟 闭应洲 汪慎文 胡玉荣 XIE Cheng-Wang;YU Wei-Wei;BI Ying-Zhou;WANG Shen-Wen;HU Yu-Rong(School of Computer and Information Engineering,Nanning Normal University,Nanning 530299,China;School of Software Engineering,Beijing University of Technology,Beijing 100124,China;School of Information Engineering,Hebei Geo University,Shijiazhuang 050031,China;Department of Science and Technology,Jingchu University of Technology,Jingmen 448000,China)
出处 《软件学报》 EI CSCD 北大核心 2020年第2期356-373,共18页 Journal of Software
基金 国家自然科学基金(61763010,61402481,61165004) 广西八桂学者项目 河北青年拔尖人才支持计划(冀字[2013]17) 河北省自然科学基金(F2015403046) 河北省教育厅科技重点项目(ZD2018083) 湖北省教育厅科研项目(B2015240) 荆楚理工学院科学研究重点基金(ZR201402) 荆楚理工学院科学研究引进人才科研启动金(QDB201605).
关键词 高维多目标优化 分解策略 混合水平正交实验设计 高维多目标进化算法 many-objective optimization decomposition strategy mix-level orthogonal experimental design many-objective evolutionary algorithm
  • 相关文献

参考文献7

二级参考文献48

  • 1曾三友,魏巍,康立山,姚书振.基于正交设计的多目标演化算法[J].计算机学报,2005,28(7):1153-1162. 被引量:36
  • 2郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 3Deb K, Pratap A, Agarwal S, Meyadvan T. A fast and elitist multi-objective genetic algorithm. NSGA-1I [ J ]. IEEE Transactions on Evolutionary Computation, 2002,6 ( 2 ) : 182 - 197.
  • 4Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength pareto evolutionary algorithm [ A ]. Giannakoglou K,Tsahalis DT, Periaux J, Papailious KD, Fogarty T, eds. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems [ C ]. Berlin: Springer-Verlag ,2002.95 - 100.
  • 5Knowles J D, Come D W. Approximating the non-domina- ted front using the pareto archived evolution strategy [ J ]. Evolutionary Computation,2000,8 ( 2 ): 149 - 172.
  • 6Come D W, Knowles J D, Oates M J. The Pareto-envelope based selection algorithm for multi-objective optimization [ A]. Proceedings of the 6th International Conference on Parallel Problem Solving from Nature [ C ]. Berlin : Spring- er, 2000 : 869 - 878.
  • 7Come D W, Jerram N R, Knowles J D, et al. PESA-II: Re- gion-based selection in evolutionary multi-objective optimi- zation [ A ]. Proceedings of the Genetic and Evolutionary Computation Conference[ C ]. San Francisco: Morgan Kauf- mann Publishers, 2001. 283 - 290.
  • 8Coello C A, Pulido G T, Lechuga M S. Handling multiple objectives with particles swarm optimization [ J ]. 1EEE Transactions on Evolutionary Computation, 2004,8 (3) : 256 - 279.
  • 9Sierra M R, Coello C A. Improving PSO-based multi-objec- tive optimization using crowding, mutation and e-domi- nance[A]. Proceedings of 3rd International Conference on Evolutionary Multi-criterion Optimization [ C ]. Berlin: Springer, 2005. 505 - 519.
  • 10Zhang QF,Zhou AM,Jin Y. RM-MEDA:A regularity mod- el based multi-objective estimation of distribution algorithm [ J ]. IEEE Transactions on Evolutionary Computations, 2007,12(1) :1 -23.

共引文献503

同被引文献65

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部