期刊文献+

基于脉冲神经网络的织物瑕点检测算法

Fabric Defect Detection Algorithm Based on Spiking Neural Network
下载PDF
导出
摘要 针对纺织业中织物瑕点检测尚未达到自动化、智能化,提出一种新的织物检测算法——基于脉冲神经网络(SNN)的织物瑕点检测算法.该算法根据生物信息处理机制,把网络模型分成3层,分别为:接收层、中间层、输出层.接收层负责将图像信息转为神经元的输入序列;中间层根据四个不同权重矩阵的输出信息判断是否属于四个方向上的边缘像素点;输出层将汇总中间的输出信息并判断是否为边缘图像点;最后根据特征值经mallat算法定位瑕点区域.通过实验分析和对比,其结果表明该算法具有较好的检测率. In view of the lack of automation and intelligence in fabric defect detection,a new fabric defect detection algorithm based on spiking neural network(SNN)is proposed in this paper.According to the biological information processing mechanism,the network model is divided into three layers,namely,receiving layer,middle layer and output layer.The receiving layer is responsible for converting the image information into the neuron’s input sequence;The middle layer determines whether the edge pixel points belong to four directions according to the output information of four different weight matrices.The output layer will summarize the intermediate output information and determine whether it is edge image point.Finally,the defect area is located by Mallat algorithm based on eigenvalues.Experimental analysis and comparison show that the algorithm has good detection rate.
作者 陈玉思 刘赟 CHEN Yusi;LIU Yun(School of Mathematics and Computer Science,Quanzhou Normal University,Fujian 362000,China)
出处 《泉州师范学院学报》 2019年第6期39-44,共6页 Journal of Quanzhou Normal University
基金 福建省中青年教师教育科研项目(JAT170476).
关键词 织物 瑕点检测 脉冲神经网络 图像处理 权重矩阵 fabric defect detection spiking neural network(SNN) image processing weight matrix
  • 相关文献

参考文献3

二级参考文献31

  • 1CHO C S,CHUNG B M,PARK M J.Development of real-time vision-based fabric inspection system[J].IEEE Transactions on Industrial Electronics,2005,52(4):1073-1079.
  • 2AJAY K.Computer-vision-based fabric defect detection:a survey[J].IEEE Transactions on Industrial Electronics,2008,55(1):348-363.
  • 3GUAN SHENGQI,SHI XIUHUA.Fabric defect detection based on wavelet decomposition with one resolution level[C]//International Symposium on Information Science and Engineering.Washington,DC:IEEE,2008,1:281-285.
  • 4ALIMOHAMADI H,AHMADYFARD A,SHOJAEE E.Defect detection in textiles using morphological analysis of optimal Gabor wavelet filter response[C]//International Conference on Computer and Automation Engineering.Washington,DC:IEEE,2009:26-30.
  • 5TAJERIPOUR F,KABIR E,SHEIKHI A.Fabric defect detection using modified local binary patterns[J].EURASIP Journal on Advances in Signal Processing,2008,2008(1):1-12.
  • 6OJALA T,PIETIKAEINEN M,MAENPAA T.Multiresolution grayscale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,24(7):971-987.
  • 7LIAO S,LAW W K,CHUNC C S.Dominant local binary patterns for texture classification[J].IEEE Transactions on Image Processing,2009,18(5):1107-1118.
  • 8TEFAS A,KOTROPOULOS C,PITAS I.Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(7):735-746.
  • 9MAENPAA T,OJALA T,PIETIKAEINEN M,et al.Robust texture classification by subsets of local binary patterns operators[C]//International Conference on Pattern Recognition.Washington,DC:IEEE Computer Society,2000:947-950.
  • 10张涛,孙林,黄爱民.图像分形维数的差分盒方法的改进研究[J].电光与控制,2007,14(5):55-57. 被引量:17

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部