摘要
生态系统模型模拟是研究全球变化背景下区域气候变化对生态系统影响的重要方法之一,大多数气候模型预测全球大部分区域的NPP将增加,然而未来气候情景下近百年的长时间尺度下NPP及其稳定性的变化却鲜有研究。本数据结合建立在生理生态学基础上的CEVSA模型,通过强迫法发展了遥感驱动的生态系统过程模型——CEVSA-RS模型,采用的基于区域气候模型第4版(RegCM4.6)和CMIP5的HadGEM2-ES数据情景,输入驱动的气候变量,包括时、空间分辨率分别为0.25°,3 h的气温、降水量、云量和空气相对湿度,后将其处理为以旬为时间步长,0.1°空间分辨率,使用Chinacover2010的土地覆盖数据,模型输出为空间分辨率为0.1°的2006–2099年的NPP及其变化趋势,以及全期(2006–2099年)、前期(2006–2035年)、中期(2036–2065年)和远期(2066–2099年)NPP稳定性多年均值。通过共享本数据集,以期为积极开展减缓和适应气候变化行动,如双碳行动,提供具有科学和现实意义的数据参考。
Ecosystem model simulation is one of the most important methods for studying the impacts of climate change on ecosystem.Presently,most ecosystem models predict an increasing net primary productivity(NPP)in most regions of the globe,however,interannual changes in NPP and its stability at long time scales of nearly 100 years have rarely been studied under future climate scenarios.The interannual NPP with a spatial resolution of 0.1°was simulated for the terrestrial ecosystem of China for the period from 2006 to 2019,through an ecosystem process model carbon exchange between vegetation,soil and atmosphere-remote sensing(CEVSA-RS)using RCP4.5 and RCP8.5 climate scenarios data from the Regional Climate Model Version 4(RegCM4.6)and Coupled Model Intercomparison Project Phase 5(CMIP5).Then the dataset described here was produced and includes the interannual trends,multi-year averages,and stability data for the period from 2006 to 2099,but also in time periods:the early period(2006-2035),the middle period(2036-2065),and the far period(2066-2099),each under the RCP4.5 and RCP8.5 climate scenarios.This dataset has scientific and practical application potential for climate change mitigation and research and adaptation actions.
作者
陈惺
王军邦
何启凡
王春雨
叶辉
Watson,A.E.
Chen,X.;Wang,J.B.;He,Q.F.;Wang,C.Y.;Ye,H.;Watson,A.E.(National Ecosystem Science Data Center,Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China;University of Chinese Academy of Sciences,Beijing 100049,China;College of Tourism and Geography,Jiujiang University,Jiujiang 332005,China;Qilu Normal University,Jinan 205200,China)
出处
《全球变化数据学报(中英文)》
CSCD
2023年第2期172-179,292-299,共16页
Journal of Global Change Data & Discovery
基金
国家自然科学基金(31861143015,31971507)
中国科学院–青海省人民政府三江源国家公园联合研究专项(LHZX-2020-07)