期刊文献+

Binary pore structure characteristics of tight sandstone reservoirs 被引量:1

Binary pore structure characteristics of tight sandstone reservoirs
下载PDF
导出
摘要 The pore structure and its influence on physical properties and oil saturation of the Triassic Chang 7 sandstones,Ordos Basin were discussed using thin sections,physical properties,oil saturation and mercury intrusion data.The results show that the tight sandstone has a binary pore structure:when the pore throat radius is larger than the peak radius,the pore radius is significantly larger than throat size,the pore structure is similar to the bead-string model with no fractal feature,and the pore throat volume is determined by the pore volume.When the pore throat radius is smaller than the peak radius,the pore structure is close to the capillary model and shows fractal features,the pore size is close to the throat size,and the pore throat volume is determined by the throat radius.The development of pore throats larger than the peak radius provides most of the oil storage space and is the major controlling factor for the porosity and permeability variation of tight sandstone.The pore throat smaller than the peak radius(including throats with no mercury invaded)contributes major reservoir space,it shows limited variation and has little effect on the change of physical properties which is lack of correlation with oil saturation.The pore throat larger than the peak radius is mainly composed of secondary and intergranular pores.Therefore genesis and main controlling factors of large pores such as intergranular and dissolved pores should be emphasized when predicting the tight sandstones quality. The pore structure and its influence on physical properties and oil saturation of the Triassic Chang 7 sandstones, Ordos Basin were discussed using thin sections, physical properties, oil saturation and mercury intrusion data. The results show that the tight sandstone has a binary pore structure: when the pore throat radius is larger than the peak radius, the pore radius is significantly larger than throat size, the pore structure is similar to the bead-string model with no fractal feature, and the pore throat volume is determined by the pore volume. When the pore throat radius is smaller than the peak radius, the pore structure is close to the capillary model and shows fractal features, the pore size is close to the throat size, and the pore throat volume is determined by the throat radius. The development of pore throats larger than the peak radius provides most of the oil storage space and is the major controlling factor for the porosity and permeability variation of tight sandstone. The pore throat smaller than the peak radius(including throats with no mercury invaded) contributes major reservoir space, it shows limited variation and has little effect on the change of physical properties which is lack of correlation with oil saturation. The pore throat larger than the peak radius is mainly composed of secondary and intergranular pores. Therefore genesis and main controlling factors of large pores such as intergranular and dissolved pores should be emphasized when predicting the tight sandstones quality.
出处 《Petroleum Exploration and Development》 2019年第6期1297-1306,共10页 石油勘探与开发(英文版)
基金 Supported by the China National Science and Technology Major Project(2017ZX05063002-009) China Postdoctoral Science Foundation(2015M580797).
关键词 TIGHT SANDSTONE PORE structure reservoir FRACTAL TRIASSIC Yanchang Formation ORDOS Basin tight sandstone pore structure reservoir fractal Triassic Yanchang Formation Ordos Basin
  • 相关文献

参考文献5

二级参考文献96

共引文献229

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部