摘要
近年来,深度学习在图像处理、自然语言处理、推荐系统等领域广泛应用并取得了显著的成效,随后无线通信领域也开始将其引入,把许多复杂的通信网络问题抽象为基于图的优化问题,利用深度学习中的图神经网络模型改善传统方法的局限性。本文首先介绍了基于图的深度学习模型,然后详细讨论了深度学习模型在功率分配、流量预测和其他无线通信领域的应用与发展,最后总结了全文并讨论了未来深度学习在无线通信领域中的发展趋势。
ing many complex communication network problems into graph-based optimization problems,using graph neural network models in deep learning to improve the limitations of traditional methods.This paper first introduces graph-based deep learning models,and then discusses in detail the application and development of deep learning models in power allocation,traffic forecasting,and other wireless communication fields.Finally,the full text is summarized and the future development trend of deep learning in the field of wireless communication is discussed.
作者
张鑫昕
潘善亮
ZHANG Xin-xin;PAN Shan-liang(Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315211,China)
出处
《无线通信技术》
2023年第2期15-19,24,共6页
Wireless Communication Technology
关键词
深度学习
人工智能
通信网络
图神经网络
deep learning
artificial intelligence
communication network
graph neural network