期刊文献+

基于大模型的事件抽取技术及军事应用思考

Reflections on large model event extraction technology and military applications
下载PDF
导出
摘要 事件抽取旨在从非结构化文本中抽取出结构化事件信息,以便清晰、方便、直观地掌握并利用相关的关键信息。传统机器学习方法依赖于特征工程,利用人工构建的特征来进行事件抽取。而基于深度学习的方法利用CNN、RNN、GNN等深层神经网络通过提取重要特征来展开,但其依赖于大量的标注数据。近年来,研究者开始利用基于Transformer架构的大规模语言模型如BERT、GPT等采用预训练+微调范式来进行事件抽取并取得显著成效。而最近推出的大模型ChatGPT采用预训练+提示学习范式在自然语言处理领域取得显著成效,可以实现高效准确地抽取出关键的事件信息,将其应用到军事领域会产生重大影响。 Event extraction aims to extract structured event information from unstructured text,in order to grasp and use relevant key information clearly,conveniently and intuitively.Traditional machine learning methods rely on feature engineering,using artificially constructed features for event extraction.The method based on deep learning uses CNN,RNN,GNN and other deep neural networks to extract important features,but it relies on a large number of annotated data.In recent years,researchers begin to use transformer architecture based large-scale language models such as BERT and GPT to use pre-training and fine-tuning paradigm for event extraction and achieved remarkable results.The recently launched large model ChatGPT adopts the pre-training prompt learning paradigm to achieve remarkable results in the field of natural language processing,which can realize the efficient and accurate extraction of key event information,and its application to the military field will have a significant impact.
作者 刘涛 蒋国权 丁鲲 孙毅 刘姗姗 Liu Tao;Jiang Guoquan;Ding Kun;Sun Yi;Liu Shanshan(The Sixty-third Research Institute,National University of Defense Technology,Nanjing 210007,China;School of Computer Science,Nanjing University of Information Science and Technology,Nanjing 210044,China;Laboratory for Big Data and Decision,National University of Defense Technology,Changsha 410073,China)
出处 《网络安全与数据治理》 2023年第S01期163-168,共6页 CYBER SECURITY AND DATA GOVERNANCE
基金 中国科协(军事科技领域)青年人才托举工程项目(2021-JCJQ-QT-050)
关键词 事件抽取 机器学习 深度学习 大语言模型 event extraction machine learning deep learning large language model
  • 相关文献

参考文献5

二级参考文献15

  • 1李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:95
  • 2张锋,樊孝忠.基于最大熵模型的交集型切分歧义消解[J].北京理工大学学报,2005,25(7):590-593. 被引量:6
  • 3赵岩,王晓龙,刘秉权,关毅.融合聚类触发对特征的最大熵词性标注模型[J].计算机研究与发展,2006,43(2):268-274. 被引量:20
  • 4BERGER A L, DELLA P S A, DELLA P V J. A maximum entropy approach to natural language processing[J]. Computational Linguistics, 1996, 22(1): 39-71.
  • 5BEEFERMAN D, BERGER A, LAFFERTY J. Statistical models for text segmentation[J]. Machine I.,eaming, 1999, 34(1-3): 177-210.
  • 6NIGAM K, LAFFERTY J, MCCALLUM A. Using maximum entropy for text classification[C]//Proceedings of the IJCAI99 Workshop on Information Filtering. Stockholm, Sweden: MII Press, 1999.
  • 7DARROCH J N, RATCLIFF D. Gcncralized iterative scaling for log-linear modcls[J].Annals of Mathematical Statistics, 1972, 43(5): 1470-1480.
  • 8DELLA P S, DELLA P V, LAFFERTY J. Inducing features of random fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(4): 380-393.
  • 9RATNAPARKHI A. Maximum entropy models for natural language ambiguity resolution[D]. Ponnsy lvania: University of Pennsylvania, 1998.
  • 10赵妍妍,王啸吟,秦兵,等.中文事件抽取中事件类别的自动识别[C].第三届学生计算语言学研讨会论文集,2006:240-245

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部