期刊文献+

一种基于硬性微针阵列的柔性干电极及其制备方法

A novel fabrication method of flexible dry electrode with rigid microneedles for biopotential monitoring
下载PDF
导出
摘要 针对脑机接口系统、生理监护系统中对生物体电信号的高效采集需求,本文提出了一种基于微针阵列柔性干电极制备的新方法。该方法以柔性聚对二甲苯(parylene)为基底,利用parylene包裹固化后的紫外胶作为刚性微针阵列主体。通过该方法制备的柔性干电极更贴合皮肤表面的弯曲和成形,提高了电极与皮肤接触的舒适性。所制备的刚性微针亦可增加电极与皮肤的接触面积,降低电极与皮肤之间的接触阻抗。利用电化学阻抗谱和生物电位记录测试,证实此柔性干电极与传统的银/氯化银(Ag/AgCl)湿电极表现出相似的性能水平。该柔性干电极具有重量轻、柔性高、生物相容性强等优点,有望长期用作可穿戴脑机接口系统的头皮脑电电极。 In this paper,a novel fabrication method of flexible dry electrode with rigid microneedles for brain computer interface and healthcare biopotential monitoring,which is utilizing ultraviolet cured(UV-cured)adhesive as the body of rigid microneedles.The flexible dry electrode is constructed with flexible parylene substrate and rigid UV-cured adhesive microneedls array which enclosed by parylene.The rigid microneedles are contributed to increase electrode-to-skin contact area and reduce contact impedance.The proposed flexible dry electrode can flex and shape itself to the curved skin surface and provide good comfort and electrode-to-skin contact.Equivalent circuit modeling was used to study the electrode-skin interface.Using electrochemical impedance spectroscopy and biopotential recording test,we demonstrate that the proposed flexible dry electrodes exhibit similar performance in comparison with those of conventional Ag/AgCl wet electrodes.The proposed flexible dry electrode,which is light-weight,flexible and well biocompatible,can be taken as a promising bioelectrode for long-term wearable health monitoring systems.
作者 陈远方 裴为华 张利剑 CHEN Yuanfang;PEI Weihua;ZHANG Lijian(Beijing Institute of Mechanical Equipment,Beijing 100854,China;Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China)
出处 《微纳电子与智能制造》 2022年第3期109-114,共6页 Micro/nano Electronics and Intelligent Manufacturing
关键词 脑机接口 干电极 柔性 微针 生物电信号 brain computer interface dry electrode flexible microneedle biopotential
  • 相关文献

参考文献2

二级参考文献26

  • 1Resnik D, Vrtacnik D, Aljancic U, et al. Different aspect ratio pyramidal tips obtained by wet etching of (100) and (111) silicon. Microchem J, 2003, 34:591-593.
  • 2Wilke N, Morrissey A. Silicon microneedle formation using modified mask designs based on convex corner undercut. J Micromech Microeng, 2007, 17:238-244.
  • 3Cheng X, Gao X, Gao S K, et al. Design and implementation of a brain*computer interface with high transfer rates. IEEE Trans Bio-med Eng, 200, 49:1181 1186.
  • 4Matteucci M, Carabalona R, Casella M, et al. Mieropatterned dry electrodes for brain-computer interface. Microelectron Eng, 2007, 84:1737-1740.
  • 5Griss P, Enoksson P, Tolvanen-Laakso H K, et al. Micromachined electrodes for biopotential measurements. J Microelectromech S, 2001, 10:10-16.
  • 6Griss P, Tolvanen-Laakso H K, Merilainen P, et al. Characterization of micromachined spiked biopotential electrodes. IEEE Trans Bio-med Eng, 2002, 49:597-604.
  • 7Baek J, An J, Choi J, et al. Flexible polymeric dry electrodes for the long-term monitoring of ECG. Sensor Actuat A: Phys, 2008, 143:423 429.
  • 8Yu L M, Tay F, Guo D G, et al. A microfabricated electrode with hollow microneedles for ECG measurement. Sensor Actuat A: Phys, 2009, 151:17-22.
  • 9Henry S, McAllister D V, Alien M G, et al. Micromachined needles for the transdermal delivery of drugs. In: Annual of International Conference on IEEE Microelectromech System. Germany: Heidelberg, 1998. 494-498.
  • 10RufIini G, Dunne S, Farres E, et al. A dry electrophysiology electrode using CNT arrays. Sensor Actuat A: Phys, 2006, 132:34-41.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部