摘要
随着信息与集成电路技术和产业的快速发展,目前已经进入到大数据与后摩尔技术时代,如何快速有效地处理海量复杂信息,成为传统的微电子集成电路技术面临的巨大的挑战与发展瓶颈,探索研究并提出变革性技术,突破传统技术路线与发展途径的发展瓶颈,成为当前国际微电子集成电路技术领域研究的必然趋势。其中,采用类脑型神经形态计算方式,拟通过模拟人类大脑处理信息的方式,有望解决传统技术的瓶颈问题,成为变革性技术发展路线之一。类脑型神经形态计算方式与系统实现的基础是能够满足新系统需求的新型功能器件的发明与构建,而新型功能器件的构建,必须依赖新效应材料研究与应用作为支撑。针对新型铪基氧化物中所展现的丰富物理效应、独特优异特性及其在神经形态忆阻器件研究方面的现状与前景进行概述与展望,力图从材料发展的基础方面,为变革性技术发展探索可能的发展途径。
With the development of the information and microelectronics technologies,innovative technologies breakthroughs in the algorithms,systems architectures,devices,and materials regimes are required in order to process the massive unstructured data in fast and efficient ways.Among the new functions of materials categories,Hf-based oxides exhibit the abundant physical effects such as high-k dielectrics,resistive switching,ferroelectricity,and excellent performances in the corresponding devices.In this article,we will focus on the properties of the Hf-based oxide materials and the potential applications in new concept and new functions of devices such as resistive switching and ferroelectric devices.These new concept and function of devices may construct the device basis of the future brain-inspired neuromorphic computing neural network paradigms and systems.
作者
康晋锋
KANG Jinfeng(Department of Nano/Microelectronics in EECS School,Peking University,Beijing 100871,China)
出处
《微纳电子与智能制造》
2019年第4期4-9,共6页
Micro/nano Electronics and Intelligent Manufacturing
基金
国家自然科学基金群体项目“纳米尺度集成电路新器件与新工艺研究”(61421005)项目资助.
关键词
铪基氧化物
阻变效应
铁电效应
忆阻与神经形态器件
Hf-based oxides
resistive switching
ferroelectricity
memristive and neuromorphic devices